85 research outputs found
Flavour physics constraints in the BMSSM
We study the implications of the presence of the two leading-order,
non-renormalizable operators in the Higgs sector of the MSSM to flavour physics
observables. We identify the constraints of flavour physics on the parameters
of the BMSSM when we: a) focus on a region of parameters for which electroweak
baryogenesis is feasible, b) use a CMSSM-like parametrization, and c) consider
the case of a generic NUHM-type model. We find significant differences as
compared to the standard MSSM case.Comment: 22 pages, 7 figure
Recommended from our members
Binaural specialisation in human auditory cortex: an fMRI investigation of interaural correlation sensitivity
A listener's sensitivity to the interaural correlation (IAC) of sound plays an important role in several phenomena in binaural hearing. Although IAC has been examined extensively in neurophysiological studies in animals and in psychophysical studies in humans, little is known about the neural basis of sensitivity to IAC in humans. The present study employed functional magnetic resonance imaging to measure blood oxygen level-dependent (BOLD) activity in auditory brainstem and cortical structures in human listeners during presentation of band-pass noise stimuli between which IAC was varied systematically. The stimuli evoked significant bilateral activation in the inferior colliculus, medial geniculate body, and auditory cortex. There was a significant positive relationship between BOLD activity and IAC which was confined to a distinct subregion of primary auditory cortex located bilaterally at the lateral extent of Heschl's gyrus. Comparison with published anatomical data indicated that this area may also be cytoarchitecturally distinct. Larger differences in activation were found between levels of IAC near unity than between levels near zero. This response pattern is qualitatively compatible with previous measures of psychophysical and neurophysiological sensitivity to IAC
Measuring V_ub and probing SUSY with double ratios of purely leptonic decays of B and D mesons
The experimental prospects for precise measurements of the leptonic decays
B_u -> tau nu / mu nu, B_s -> mu+ mu-, D -> mu nu and D_s -> mu nu / tau nu are
very promising. Double ratios involving four of these decays can be defined in
which the dependence on the values of the decay constants is essentially
eliminated, thus enabling complementary measurements of the CKM matrix element
V_ub with a small theoretical error. We quantify the experimental error in a
possible future measurement of |V_ub| using this approach, and show that it is
competitive with the anticipated precision from the conventional approaches.
Moreover, it is shown that such double ratios can be more effective than the
individual leptonic decays as a probe of the parameter space of supersymmetric
models. We emphasize that the double ratios have the advantage of using |V_ub|
as an input parameter (for which there is experimental information), while the
individual decays have an uncertainty from the decay constants (e.g. f_B_s),
and hence a reliance on theoretical techniques such as lattice QCD.Comment: 21 pages, 4 figure
The decay Bs -> mu+ mu-: updated SUSY constraints and prospects
We perform a study of the impact of the recently released limits on BR(Bs ->
mu+ mu-) by LHCb and CMS on several SUSY models. We show that the obtained
constraints can be superior to those which are derived from direct searches for
SUSY particles in some scenarios, and the use of a double ratio of purely
leptonic decays involving Bs -> mu+ mu- can further strengthen such
constraints. We also discuss the experimental sensitivity and prospects for
observation of Bs -> mu+ mu- during the sqrt(s)=7 TeV run of the LHC, and its
potential implications.Comment: 30 pages, 21 figures. v2: Improved discussion of constraints from B
-> tau nu, references adde
Higgs boson decay into 2 photons in the type~II Seesaw Model
We study the two photon decay channel of the Standard Model-like component of
the CP-even Higgs bosons present in the type II Seesaw Model. The corresponding
cross-section is found to be significantly enhanced in parts of the parameter
space, due to the (doubly-)charged Higgs bosons' virtual
contributions, while all the other Higgs decay channels remain Standard
Model(SM)-like. In other parts of the parameter space (and
) interfere destructively, reducing the two photon branching ratio
tremendously below the SM prediction. Such properties allow to account for any
excess such as the one reported by ATLAS/CMS at GeV if confirmed
by future data; if not, for the fact that a SM-like Higgs exclusion in the
diphoton channel around 114-115 GeV as reported by ATLAS, does not contradict a
SM-like Higgs at LEP(!), and at any rate, for the fact that ATLAS/CMS exclusion
limits put stringent lower bounds on the mass, particularly in
the parameter space regions where the direct limits from same-sign leptonic
decays of do not apply.Comment: 26 pages, 7 figure
Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models
Various new physics models predict a light CP-odd Higgs boson (labeled as
) and open up new decay modes for Z-boson, such as ,
and , which could be explored at the GigaZ option of
the ILC. In this work we investigate these rare decays in several new physics
models, namely the type-II two Higgs doublet model (type-II 2HDM), the
lepton-specific two Higgs doublet model (L2HDM), the nearly minimal
supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric
standard model (NMSSM). We find that in the parameter space allowed by current
experiments, the branching ratios can reach for
(), for and for , which
implies that the decays and may be accessible
at the GigaZ option. Moreover, since different models predict different
patterns of the branching ratios, the measurement of these rare decays at the
GigaZ may be utilized to distinguish the models.Comment: Version in JHEP (discussions added, errors corrected
Applicability and Cost Implications for Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors Based on the ODYSSEY Outcomes Trial: Insights From the Department of Veterans Affairs
In the recently presented ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab trial, alirocumab use in patients with acute coronary syndrome (ACS) and low-density lipoprotein cholesterol (LDL-C) â„70 mg/dL (or nonâhigh-density lipoprotein cholesterol â„100 mg/dL or apolipoprotein B â„80 mg/dL) resulted in a 15% relative (1.6% absolute) reduction in the risk of major adverse cardiovascular events. We evaluated what proportion of patients in the VA Health Care System would qualify for alirocumab on the basis of ODYSSEY Outcomes criteria, how they are currently treated with LDL-Câlowering medications, and the cost implications if other evidence-based medications were used first before a proprotein convertase subtilisin/kexin type 9 inhibitor was considered
Very High-Risk ASCVD and Eligibility for Nonstatin Therapies Based on the 2018 AHA/ACC Cholesterol Guidelines
The 2018 American Heart Association/American College of Cardiology Multisociety Cholesterol Guidelines recommend risk stratification among patients with atherosclerotic cardiovascular disease (ASCVD) to identify âvery high-risk ASCVD patients.â These patients have characteristics associated with a higher risk of recurrent ASCVD events; consequently, they derive a higher net absolute benefit from addition of ezetimibe and/or a proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9i) to statin therapy. From a clinical and payerâs perspective, we assessed the proportion of patients with ASCVD who will qualify as very high-risk based on the guideline criteria, their current lipid management, and how this will change with maximizing statin therapy and stepwise use of ezetimibe before consideration for a PCSK9i, as recommended by the 2018 cholesterol guideline
Supersymmetric constraints from Bs -> mu+mu- and B -> K* mu+mu- observables
We study the implications of the recent LHCb limit and results on Bs ->
mu+mu- and B -> K* mu+mu- observables in the constrained SUSY scenarios. After
discussing the Standard Model predictions and carefully estimating the
theoretical errors, we show the constraining power of these observables in
CMSSM and NUHM. The latest limit on BR(Bs -> mu+mu-), being very close to the
SM prediction, constrains strongly the large tan(beta) regime and we show that
the various angular observables from B -> K* mu+mu- decay can provide
complementary information in particular for moderate tan(beta) values.Comment: 30 pages, 14 figure
Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion
The hint of a new particle around 125 GeV at the LHC through the decay modes
of diphoton and a number of others may point to quite a number of
possibilities. While at the LHC the dominant production mechanism for the Higgs
boson of the standard model and some other extensions is via the gluon fusion
process, the alternative vector boson fusion is more sensitive to electroweak
symmetry breaking through the gauge-Higgs couplings and therefore can be used
to probe for models beyond the standard model. In this work, using the well
known dijet-tagging technique to single out the vector boson fusion mechanism,
we investigate its capability to discriminate a number of models that have been
suggested to give an enhanced inclusive diphoton production rate, including the
standard model Higgs boson, fermiophobic Higgs boson, Randall-Sundrum radion,
inert-Higgs-doublet model, two-Higgs-doublet model, and the MSSM. The rates in
vector-boson fusion can give more information of the underlying models to help
distinguishing among the models.Comment: 31 pages, 3 figures; in this version some wordings are change
- âŠ