8 research outputs found

    Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change

    Get PDF
    Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO2 availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO2 (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO2 and temperature are leading to increased CO2 and HCO3- and decreased CO32- and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO2 affinity, while increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO2 affinity, decreased iron availability increases CO2 affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions among the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity

    CHARM: Cooperation of Humans and Robots for Mars - Final Report

    No full text

    Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite

    Get PDF
    This study investigated the number of Streptococcus mutans CFU (colony forming units) in the saliva and plaque adjacent to orthodontic brackets bonded with a glass ionomer cement - GIC (Fuji Ortho) or a resin-based composite - RC (Concise). Twenty male and female patients, aged 12 to 20 years, participated in the study. Saliva was collected before and after placement of appliances. Plaque was collected from areas adjacent to brackets and saliva was again collected on the 15th, 30th, and 45th day after placement. On the 30th day, 0.4% stannous fluoride gel was applied for 4 minutes. No significant modification in the number of Streptococcus mutans CFU in saliva was observed after placement of the fixed orthodontic appliances. On the 15th day, the percentage of Streptococcus mutans CFU in plaque was statistically lower in sites adjacent to GIC-bonded brackets (mean = 0.365) than in those adjacent to RC-bonded brackets (mean = 0.935). No evidence was found of a contribution of GIC to the reduction of CFU in plaque after the 15th day. Topical application of stannous fluoride gel on the 30th day reduced the number of CFU in saliva, but not in plaque. This study suggests that the antimicrobial activity of GIC occurs only in the initial phase and is not responsible for a long-term anticariogenic property

    Myelofibrosis with Myeloid Metaplasia: New Developments in Pathogenesis and Treatment

    No full text
    corecore