30 research outputs found

    Conductivity Imaging in Plates Using Current Injection Tomography

    Get PDF
    The task of reconstructing an unknown distribution of electrical conductivity is widely recognized as a central theoretical problem in eddy-current nondestructive evaluation [1]. Rather than using an eddy-current method, we address this problem using DC injection of current into conductive materials. Experimental methods of the magnetic imaging of injected currents using high-resolution SQUID magnetometers have been described elsewhere [2]. In this paper we describe a tomographic method for using magnetically-imaged, injected currents to reconstruct distributions of electrical conductivity. Much of what we describe should also be applicable to data obtained using uniform colinear eddy currents induced by means of planar sheet inducers [4, 5]

    Potential New Applications of SQUIDS and SQUID Arrays in NDE

    Get PDF
    There are a number of applications in NDE in which SQUID based instrumentation can potentially provide substantial improvements over room temperature electronics. In addition to direct measurements of the magnetic signatures of cracks and flaws, experiments have shown that SQUIDs may be used as ultrasensitive detectors of AC fields for eddy current detection, detection of magnetic fields due to electrochemical corrosion currents, and detection of NMR signals. Recent results in all these areas will be summarized together with the relative advantage of using SQUID based systems

    A mathematical model for electrical stimulation of a monolayer of cardiac cells

    Get PDF
    BACKGROUND: The goal of our study is to examine the effect of stimulating a two-dimensional sheet of myocardial cells. We assume that the stimulating electrode is located in a bath perfusing the tissue. METHODS: An equation governing the transmembrane potential, based on the continuity equation and Ohm's law, is solved numerically using a finite difference technique. RESULTS: The sheet is depolarized under the stimulating electrode and is hyperpolarized on each side of the electrode along the fiber axis. CONCLUSIONS: The results are similar to those obtained previously by Sepulveda et al. (Biophys J, 55: 987–999, 1989) for stimulation of a two-dimensional sheet of tissue with no perfusing bath present

    Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus

    Get PDF
    Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron

    Genetic Basis of Myocarditis: Myth or Reality?

    Get PDF
    n/

    Wide-area low-energy surface stimulation of large mammalian ventricular tissue

    No full text
    The epicardial and endocardial surfaces of the heart are attractive targets to administer antiarrhythmic electrotherapies. Electrically stimulating wide areas of the surfaces of small mammalian ventricles is straightforward given the relatively small scale of their myocardial dimensions compared to the tissue space constant and electrical field. However, it has yet to be proven for larger mammalian hearts with tissue properties and ventricular dimensions closer to humans. Our goal was to address the feasibility and impact of wide-area electrical stimulation on the ventricular surfaces of large mammalian hearts at different stimulus strengths. This was accomplished by placing long line electrodes on the ventricular surfaces of pig hearts that span wide areas, and activating them individually. Stimulus efficacy was assessed and compared between surfaces, and tissue viability was evaluated. Activation time was dependent on stimulation strength and location, achieving uniform linear stimulation at 9x threshold strength. Endocardial stimulation activated more tissue transmurally than epicardial stimulation, which could be considered a potential target for future cardiac electrotherapies. Overall, our results indicate that electrically stimulating wide areas of the ventricular surfaces of large mammals is achievable with line electrodes, minimal tissue damage, and energies under the human pain threshold (100 mJ)

    Organs-on-Chips as Bridges for Predictive Toxicology

    No full text
    The next generation of chemical toxicity testing will use organs-on-chips (OoCs)—3D cultures of heterotypic cells with appropriate extracellular matrices to better approximate the in vivo cellular microenvironment. Researchers are already working to validate whether OoCs are predictive of toxicity in humans. Here, we review two other key aspects of how OoCs may advance predictive toxicology—each taking advantage of OoCs as systems of intermediate complexity that remain experimentally accessible. First, the intermediate complexity of OoCs will help elucidate the scale(s) of organismal complexity that currently confound computational predictions of in vivo toxicity from in vitro data sets. Identifying the strongest confounding factors will help researchers improve the computational models underlying such predictions. Second, the experimental accessibility of OoCs will allow researchers to analyze chemical-exposure responses in OoCs using an array of high-content readouts—from fluorescent biosensors that report dynamic changes in specific cell signaling pathways to unbiased searches over broader biochemical space using technologies like ion mobility-mass spectrometry. Such high-content information on OoC responses will help determine the details of adverse outcome pathways. We note these possible uses of OoCs so that researchers and engineers can consider them in the design of next-generation OoC control, perfusion, and analysis platforms
    corecore