2,266 research outputs found

    Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men

    Get PDF
    Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), leading to similar improvements in skeletal muscle capillary density and microvascular function in young healthy humans. In this study we made the first comparisons of the muscle microvascular response to SIT and MICT in an obese population. Sixteen young obese men (age 25±1 yr, BMI 34.8±0.9 kg.m-2) were randomly assigned to 4 weeks of MICT (40-60 min cycling at ~65% VO2peak, 5 times per wk.) or constant load SIT (4-7 constant workload intervals of 200% Wattmax 3 times per wk.). Muscle biopsies were taken before and after training from the m. vastus lateralis to measure muscle microvascular endothelial eNOS content, eNOS serine1177 phosphorylation, NOX2 content and capillarization using quantitative immunofluorescence microscopy. Maximal aerobic capacity (VO2peak), whole body insulin sensitivity and arterial stiffness were also assessed. SIT and MICT increased skeletal muscle microvascular eNOS content and eNOS ser1177 phosphorylation in terminal arterioles and capillaries (P<0.05), but the later effect was eliminated when normalised to eNOS content (P = 0.217). SIT and MICT also reduced microvascular endothelial NOX2 content (P<0.05) and both increased capillary density and capillary-fibre-perimeter exchange index (P<0.05). In parallel, SIT and MICT increased VO2peak (P<0.05), whole body insulin sensitivity (P<0.05) and reduced central artery stiffness (P<0.05). As no significant differences were observed between SIT and MICT it is concluded that SIT is a time efficient alternative to MICT to improve aerobic capacity, insulin sensitivity and muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in young obese men

    Ultrasound Does Not Detect Acute Changes in Glycogen in Vastus Lateralis of Man.

    Get PDF
    PURPOSE: To examine the validity of ultrasound (via cloud based software that measures pixilation intensity according to a scale of 0-100) to non-invasively assess muscle glycogen in human skeletal muscle. METHODS: In Study 1, 14 professional male rugby league players competed in an 80-minute competitive rugby league game. In Study 2 (in a randomized repeated measures design), 16 recreationally active males completed an exhaustive cycling protocol to deplete muscle glycogen followed by 36 hours of HIGH or LOW carbohydrate intake (8 v 3 g.kg body mass). In both studies, muscle biopsies and ultrasound scans were obtained from the vastus lateralis (at 50% of the muscle length) before and after match play in Study 1 and at 36 h after glycogen depletion in Study 2. RESULTS: Despite match play reducing (P0.05) were present between changes in muscle glycogen concentration and changes in ultrasound scores. CONCLUSION: Data demonstrate that ultrasound (as based on measures of pixilation intensity) is not valid to measure muscle glycogen status within the physiological range (i.e. 200-500 mmol.kg dw) that is applicable to exercise-induced muscle glycogen utilization and post-exercise muscle glycogen re-synthesis

    Identification of Bio-oil Compound Utilizing Yeasts Through Phenotypic Microarray Screening

    Get PDF
    Abstract: Biomass pyrolysis bio-oil contains a plethora of carbon sources with the potential to be utilized by microorganisms and converted into high value products. However, the majority of these compounds are either highly toxic to microorganisms or are not directly utilizable. Hence research is required to develop methods of separating microbe friendly compounds from inhibitory ones, and to also identify novel microorganisms that can utilise the principal carbon sources in pyrolysis bio-oil. This study employed a phenotypic microarray (PM) technique that measured yeast metabolic output to screen for and shortlist yeast strains able to metabolize various bio-oil carbon sources, with a focus on the anhydrosugar levoglucosan. Four strains of yeast (two Pichia spp. and two Kluyveromyces spp.) were shortlisted due to their high metabolic output (between 79.7 and 113.7 redox signal intensity) on levoglucosan from the PM assay. Under anaerobic fermentation conditions the strains were able to uptake levoglucosan (between 79 and 100% uptake efficiency) but not produce bioethanol; yet trace amounts of acetic acid were generated. This study demonstrated the application of applying the PM technique to screen for novel yeast strains with abilities to metabolize compounds present in pyrolysis bio-oil that could lead to the identification of novel levoglucosan utilization pathways. Graphical Abstract: [Figure not available: see fulltext.]

    A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    Get PDF
    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials

    An Improved Upper Bound for the Ring Loading Problem

    Full text link
    The Ring Loading Problem emerged in the 1990s to model an important special case of telecommunication networks (SONET rings) which gained attention from practitioners and theorists alike. Given an undirected cycle on nn nodes together with non-negative demands between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the maximum cumulated demand on any edge is minimized. Let LL be the value of such a solution. In the relaxed version of the problem, each demand can be split into two parts where the first part is routed clockwise while the second part is routed counter-clockwise. Denote with L∗L^* the maximum load of a minimum split routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that L≤L∗+1.5DL \leq L^* + 1.5D, where DD is the maximum demand value. They also found (implicitly) an instance of the Ring Loading Problem with L=L∗+1.01DL = L^* + 1.01D. Recently, Skutella [Sku16] improved these bounds by showing that L≤L∗+1914DL \leq L^* + \frac{19}{14}D, and there exists an instance with L=L∗+1.1DL = L^* + 1.1D. We contribute to this line of research by showing that L≤L∗+1.3DL \leq L^* + 1.3D. We also take a first step towards lower and upper bounds for small instances

    Whey Protein Augments Leucinemia and Post-Exercise p70S6K1 Activity Compared to a Hydrolysed Collagen Blend When in Recovery From Training With Low Carbohydrate Availability

    Get PDF
    We examined the effects of whey versus collagen protein on skeletal muscle cell signalling responses associated with mitochondrial biogenesis and protein synthesis in recovery from an acute training session completed with low carbohydrate (CHO) availability. In a repeated measures design (after adhering to a 36-h exercise-dietary intervention to standardise pre-exercise muscle glycogen), eight males completed a 75-min non-exhaustive cycling protocol and consumed 22 g of a hydrolysed collagen blend (COLLAGEN) or whey (WHEY) protein 45 min prior to exercise, 22 g during exercise and 22 g immediately post-exercise. Exercise decreased (P0.05) was observed for p53, Parkin and Beclin1 mRNA. Exercise suppressed (P<0.05) p70S6K1 activity in both conditions immediately post-exercise (≈ 25 fmol.min-1.mg-1). Post-exercise feeding increased p70S6K1 activity at 1.5 h post-exercise (P<0.05), the magnitude of which was greater (P <0.05) in WHEY (180 ± 105 fmol.min-1.mg-1) versus COLLAGEN (73 ± 42 fmol.min-1.mg-1). We conclude that protein composition does not modulate markers of mitochondrial biogenesis when in recovery from a training session deliberately completed with low CHO availability. In contrast, whey protein augments post-exercise p70S6K activity compared with hydrolysed collagen, as likely mediated via increased leucine availability

    Risks, Health Consequences, and Response Challenges for Small-Island-Based Populations: Observations From the 2017 Atlantic Hurricane Season

    Get PDF
    The intensely active 2017 Atlantic basin hurricane season provided an opportunity to examine how climate drivers, including warming oceans and rising seas, exacerbated tropical cyclone hazards. The season also highlighted the unique vulnerabilities of populations residing on Small Island Developing States (SIDS) to the catastrophic potential of these storms. During 2017, 22 of the 29 Caribbean SIDS were affected by at least one named storm, and multiple SIDS experienced extreme damage. This paper aims to review the multiplicity of storm impacts on Caribbean SIDS throughout the 2017 season, to explicate the influences of climate drivers on storm formation and intensity, to explore the propensity of SIDS to sustain severe damage and prolonged disruption of essential services, to document the spectrum of public health consequences, and to delineate the daunting hurdles that challenged emergency response and recovery operations for island-based, disaster-affected populations
    • …
    corecore