13 research outputs found

    Sex differences in mood disorders: Perspectives from humans and rodent models

    Get PDF
    Mood disorders are devastating, often chronic illnesses characterized by low mood, poor affect, and anhedonia. Notably, mood disorders are approximately twice as prevalent in women compared to men. If sex differences in mood are due to underlying biological sex differences, a better understanding of the biology is warranted to develop better treatment or even prevention of these debilitating disorders. In this review, our goals are to: 1) summarize the literature related to mood disorders with respect to sex differences in prevalence, 2) introduce the corticolimbic brain network of mood regulation, 3) discuss strategies and challenges of modeling mood disorders in mice, 4) discuss mechanisms underlying sex differences and how these can be tested in mice, and 5) discuss how our group and others have used a translational approach to investigate mechanisms underlying sex differences in mood disorders in humans and mice

    Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs

    Full text link
    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert

    Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment

    Get PDF
    corecore