70 research outputs found

    Toward physical realizations of thermodynamic resource theories

    Get PDF
    Conventional statistical mechanics describes large systems and averages over many particles or over many trials. But work, heat, and entropy impact the small scales that experimentalists can increasingly control, e.g., in single-molecule experiments. The statistical mechanics of small scales has been quantified with two toolkits developed in quantum information theory: resource theories and one-shot information theory. The field has boomed recently, but the theorems amassed have hardly impacted experiments. Can thermodynamic resource theories be realized experimentally? Via what steps can we shift the theory toward physical realizations? Should we care? I present eleven opportunities in physically realizing thermodynamic resource theories.Comment: Publication information added. Cosmetic change

    Rectification of electronic heat current by a hybrid thermal diode

    Full text link
    We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superconducting island. Electronic heat current asymmetry in the structure arises from large mismatch between the thermal properties of these two. We demonstrate experimentally temperature differences exceeding 6060 mK between the forward and reverse thermal bias configurations. Our device offers a remarkably large heat rectification ratio up to 140\sim 140 and allows its prompt implementation in true solid-state thermal nanocircuits and general-purpose electronic applications requiring energy harvesting or thermal management and isolation at the nanoscale.Comment: 8 pages, 6 color figure

    Towards quantum thermodynamics in electronic circuits

    Get PDF
    Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and implementations of Maxwell’s demon, revealing the rich physics yet to be fully probed in these systems.Peer reviewe

    Detection of Geometric Phases in Superconducting Nanocircuits

    Full text link
    When a quantum mechanical system undergoes an adiabatic cyclic evolution it acquires a geometrical phase factor in addition to the dynamical one. This effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnologies should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may applied to the design of gates for quantum computation.Comment: 12 page

    Towards a quantum representation of the ampere using single electron pumps

    Full text link
    Electron pumps generate a macroscopic electric current by controlled manipulation of single electrons. Despite intensive research towards a quantum current standard over the last 25 years, making a fast and accurate quantised electron pump has proved extremely difficult. Here we demonstrate that the accuracy of a semiconductor quantum dot pump can be dramatically improved by using specially designed gate drive waveforms. Our pump can generate a current of up to 150 pA, corresponding to almost a billion electrons per second, with an experimentally demonstrated current accuracy better than 1.2 parts per million (ppm) and strong evidence, based on fitting data to a model, that the true accuracy is approaching 0.01 ppm. This type of pump is a promising candidate for further development as a realisation of the SI base unit ampere, following a re-definition of the ampere in terms of a fixed value of the elementary charge.Comment: 8 pages, 7 figure

    A Josephson Quantum Electron Pump

    Full text link
    A macroscopic fluid pump works according to the law of Newtonian mechanics and transfers a large number of molecules per cycle (of the order of 10^23). By contrast, a nano-scale charge pump can be thought as the ultimate miniaturization of a pump, with its operation being subject to quantum mechanics and with only few electrons or even fractions of electrons transfered per cycle. It generates a direct current in the absence of an applied voltage exploiting the time-dependence of some properties of a nano-scale conductor. The idea of pumping in nanostructures was discussed theoretically a few decades ago [1-4]. So far, nano-scale pumps have been realised only in system exhibiting strong Coulombic effects [5-12], whereas evidence for pumping in the absence of Coulomb-blockade has been elusive. A pioneering experiment by Switkes et al. [13] evidenced the difficulty of modulating in time the properties of an open mesoscopic conductor at cryogenic temperatures without generating undesired bias voltages due to stray capacitances [14,15]. One possible solution to this problem is to use the ac Josephson effect to induce periodically time-dependent Andreev-reflection amplitudes in a hybrid normal-superconducting system [16]. Here we report the experimental detection of charge flow in an unbiased InAs nanowire (NW) embedded in a superconducting quantum interference device (SQUID). In this system, pumping may occur via the cyclic modulation of the phase of the order parameter of different superconducting electrodes. The symmetry of the current with respect to the enclosed magnetic flux [17,18] and bias SQUID current is a discriminating signature of pumping. Currents exceeding 20 pA are measured at 250 mK, and exhibit symmetries compatible with a pumping mechanism in this setup which realizes a Josephson quantum electron pump (JQEP).Comment: 7+ pages, 6 color figure

    Gigahertz quantized charge pumping in graphene quantum dots

    Full text link
    Single electron pumps are set to revolutionize electrical metrology by enabling the ampere to be re-defined in terms of the elementary charge of an electron. Pumps based on lithographically-fixed tunnel barriers in mesoscopic metallic systems and normal/superconducting hybrid turnstiles can reach very small error rates, but only at MHz pumping speeds corresponding to small currents of the order 1 pA. Tunable barrier pumps in semiconductor structures have been operated at GHz frequencies, but the theoretical treatment of the error rate is more complex and only approximate predictions are available. Here, we present a monolithic, fixed barrier single electron pump made entirely from graphene. We demonstrate pump operation at frequencies up to 1.4 GHz, and predict the error rate to be as low as 0.01 parts per million at 90 MHz. Combined with the record-high accuracy of the quantum Hall effect and proximity induced Josephson junctions, accurate quantized current generation brings an all-graphene closure of the quantum metrological triangle within reach. Envisaged applications for graphene charge pumps outside quantum metrology include single photon generation via electron-hole recombination in electrostatically doped bilayer graphene reservoirs, and for readout of spin-based graphene qubits in quantum information processing.Comment: 13 pages, 11 figures, includes supplementary informatio

    Ampere to get rational redefinition

    No full text

    Engines of imagination

    No full text

    Production of zero energy radioactive beams through extraction across superfluid helium surface

    No full text
    A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with a surface barrier spectrometer. This enabled us to determine the efficiency for each process unambiguously. The pulsed second sound wave proved effective in enhancing the extraction of positive ions from the surface. Thus we offer a novel method for study of impurities in superfluid helium and propose this method for production of zero energy nuclear beams for use at radioactive ion beam facilities. (C) 2003 Elsevier Science B.V. All rights reserved
    corecore