8,347 research outputs found

    Self-diffusion in a monatomic glassforming liquid embedded in the hyperbolic plane

    Full text link
    We study by Molecular Dynamics simulation the slowing down of particle motion in a two-dimensional monatomic model: a Lennard-Jones liquid on the hyperbolic plane. The negative curvature of the embedding space frustrates the long-range extension of the local hexagonal order. As a result, the liquid avoids crystallization and forms a glass. We show that, as temperature decreases, the single particle motion displays the canonical features seen in real glassforming liquids: the emergence of a "plateau" at intermediate times in the mean square displacement and a decoupling between the local relaxation time and the (hyperbolic) diffusion constant.Comment: Article for the "11th International Workshop on Complex Systems

    Global Hydromagnetic Simulations of Protoplanetary Disks with Stellar Irradiation and Simplified Thermochemistry

    Get PDF
    Outflows driven by large-scale magnetic fields likely play an important role in the evolution and dispersal of protoplanetary disks, and in setting the conditions for planet formation. We extend our 2-D axisymmetric non-ideal MHD model of these outflows by incorporating radiative transfer and simplified thermochemistry, with the twin aims of exploring how heating influences wind launching, and illustrating how such models can be tested through observations of diagnostic spectral lines. Our model disks launch magnetocentrifugal outflows primarily through magnetic tension forces, so the mass-loss rate increases only moderately when thermochemical effects are switched on. For typical field strengths, thermochemical and irradiation heating are more important than magnetic dissipation. We furthermore find that the entrained vertical magnetic flux diffuses out of the disk on secular timescales as a result of non-ideal MHD. Through post-processing line radiative transfer, we demonstrate that spectral line intensities and moment-1 maps of atomic oxygen, the HCN molecule, and other species show potentially observable differences between a model with a magnetically driven outflow and one with a weaker, photoevaporative outflow. In particular, the line shapes and velocity asymmetries in the moment-1 maps could enable the identification of outflows emanating from the disk surface.Comment: 35 pages, 20 figures, accepted for publication in Ap

    The value of what’s to come: Neural mechanisms coupling prediction error and the utility of anticipation

    Get PDF
    Having something to look forward to is a keystone of well-being. Anticipation of future reward, such as an upcoming vacation, can often be more gratifying than the experience itself. Theories suggest the utility of anticipation underpins various behaviors, ranging from beneficial information-seeking to harmful addiction. However, how neural systems compute anticipatory utility remains unclear. We analyzed the brain activity of human participants as they performed a task involving choosing whether to receive information predictive of future pleasant outcomes. Using a computational model, we show three brain regions orchestrate anticipatory utility. Specifically, ventromedial prefrontal cortex tracks the value of anticipatory utility, dopaminergic midbrain correlates with information that enhances anticipation, while sustained hippocampal activity mediates a functional coupling between these regions. Our findings suggest a previously unidentified neural underpinning for anticipation’s influence over decision-making and unify a range of phenomena associated with risk and time-delay preference

    Patterns of Individual Shopping Behavior

    Get PDF
    Much of economic theory is built on observations of aggregate, rather than individual, behavior. Here, we present novel findings on human shopping patterns at the resolution of a single purchase. Our results suggest that much of our seemingly elective activity is actually driven by simple routines. While the interleaving of shopping events creates randomness at the small scale, on the whole consumer behavior is largely predictable. We also examine income-dependent differences in how people shop, and find that wealthy individuals are more likely to bundle shopping trips. These results validate previous work on mobility from cell phone data, while describing the unpredictability of behavior at higher resolution.Comment: 4 pages, 5 figure

    Exposure to Polyfluoroalkyl Chemicals and Cholesterol, Body Weight, and Insulin Resistance in the General U.S. Population

    Get PDF
    BACKGROUND. Polyfluoroalkyl chemicals (PFCs) are used commonly in commercial applications and are detected in humans and the environment worldwide. Concern has been raised that they may disrupt lipid and weight regulation. OBJECTIVES. We investigated the relationship between PFC serum concentrations and lipid and weight outcomes in a large publicly available data set. METHODS. We analyzed data from the 2003-2004 National Health and Nutrition Examination Survey (NHANES) for participants 12-80 years of age. Using linear regression to control for covariates, we studied the association between serum concentrations of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS) and measures of cholesterol, body size, and insulin resistance. RESULTS. We observed a positive association between concentrations of PFOS, PFOA, and PFNA and total and non-high-density cholesterol. We found the opposite for PFHxS. Those in the highest quartile of PFOS exposure had total cholesterol levels 13.4 mg/dL [95% confidence interval (CI), 3.8-23.0] higher than those in the lowest quartile. For PFOA, PFNA, and PFHxS, effect estimates were 9.8 (95% CI, -0.2 to 19.7), 13.9 (95% CI, 1.9-25.9), and -7.0 (95% CI, -13.2 to -0.8), respectively. A similar pattern emerged when exposures were modeled continuously. We saw little evidence of a consistent association with body size or insulin resistance. CONCLUSIONS. This exploratory cross-sectional study is consistent with other epidemiologic studies in finding a positive association between PFOS and PFOA and cholesterol, despite much lower exposures in NHANES. Results for PFNA and PFHxS are novel, emphasizing the need to study PFCs other than PFOS and PFOA.National Institute of Environmental Health Sciences (R21ES013724, T32ES014562

    Kahler Moduli Inflation Revisited

    Get PDF
    We perform a detailed numerical analysis of inflationary solutions in Kahler moduli of type IIB flux compactifications. We show that there are inflationary solutions even when all the fields play an important role in the overall shape of the scalar potential. Moreover, there exists a direction of attraction for the inflationary trajectories that correspond to the constant volume direction. This basin of attraction enables the system to have an island of stability in the set of initial conditions. We provide explicit examples of these trajectories, compute the corresponding tilt of the density perturbations power spectrum and show that they provide a robust prediction of n_s approximately 0.96 for 60 e-folds of inflation.Comment: 27 pages, 9 figure

    Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels

    Get PDF
    Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions
    • …
    corecore