72 research outputs found

    Elevated Uptake of Plasma Macromolecules by Regions of Arterial Wall Predisposed to Plaque Instability in a Mouse Model

    Get PDF
    Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture

    A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models

    Get PDF
    In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous media-based model has been investigated through several different numerical examples. First, we investigate model parameters that have a profound influence on the flow and pressure distributions of the system. The simulation results have been compared against the waveforms generated by three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity of the proposed model demonstrates that it can be an excellent alternative for the existing models

    An anatomy-based lumped parameter model of cerebrospinal venous circulation: can an extracranial anatomical change impact intracranial hemodynamics?

    Get PDF
    Background The relationship between extracranial venous system abnormalities and central nervous system disorders has been recently theorized. In this paper we delve into this hypothesis by modeling the venous drainage in brain and spinal column areas and simulating the intracranial flow changes due to extracranial morphological stenoses. Methods A lumped parameter model of the cerebro-spinal venous drainage was created based on anatomical knowledge and vessels diameters and lengths taken from literature. Each vein was modeled as a hydraulic resistance, calculated through Poiseuille’s law. The inputs of the model were arterial flow rates of the intracranial, vertebral and lumbar districts. The effects of the obstruction of the main venous outflows were simulated. A database comprising 112 Multiple Sclerosis patients (Male/Female = 42/70; median age ± standard deviation = 43.7 ± 10.5 years) was retrospectively analyzed. Results The flow rate of the main veins estimated with the model was similar to the measures of 21 healthy controls (Male/Female = 10/11; mean age ± standard deviation = 31 ± 11 years), obtained with a 1.5 T Magnetic Resonance scanner. The intracranial reflux topography predicted with the model in cases of internal jugular vein diameter reduction was similar to those observed in the patients with internal jugular vein obstacles. Conclusions The proposed model can predict physiological and pathological behaviors with good fidelity. Despite the simplifications introduced in cerebrospinal venous circulation modeling, the key anatomical feature of the lumped parameter model allowed for a detailed analysis of the consequences of extracranial venous impairments on intracranial pressure and hemodynamics

    One-Dimensional Haemodynamic Modeling and Wave Dynamics in the Entire Adult Circulation

    Get PDF
    One-dimensional (1D) modeling is a powerful tool for studying haemodynamics; however, a comprehensive 1D model representing the entire cardiovascular system is lacking. We present a model that accounts for wave propagation in anatomically realistic systemic (including coronary and cerebral) arterial/venous networks, pulmonary arterial/venous networks and portal veins. A lumped parameter (0D) heart model represents cardiac function via a time-varying elastance and source resistance, and accounts for mechanical interactions between heart chambers mediated via pericardial constraint, the atrioventricular septum and atrioventricular plane motion. A non-linear windkessel-like 0D model represents microvascular beds, while specialized 0D models are employed for the hepatic and coronary beds. Model-derived pressure and flow waveforms throughout the circulation are shown to reproduce the characteristic features of published human waveforms. Moreover, wave intensity profiles closely resemble available in vivo profiles. Forward and backward wave intensity is quantified and compared along major arteriovenous paths, providing insights into wave dynamics in all of the major physiological networks. Interactions between cardiac function/mechanics and vascular waves are investigated. The model will be an important resource for studying the mechanics underlying pressure/flow waveforms throughout the circulation, along with global interactions between the heart and vessels under normal and pathological conditions

    Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics

    Get PDF
    Controversy exists about whether one-dimensional wave theory can explain the "self-canceling" waves that accompany the diastolic pressure decay and discharge of the arterial reservoir. Although it has been proposed that reservoir and wave effects be treated as separate phenomena, thus avoiding the issue of self-canceling waves, we have argued that reservoir effects are a phenomenological and mathematical subset of wave effects. However, a complete wave-based explanation of self-canceling diastolic expansion (pressure-decreasing) waves has not yet been advanced. These waves are present in the forward and backward components of arterial pressure and flow (P ± and Q ±, respectively), which are calculated by integrating incremental pressure and flow changes (dP ± and dQ ±, respectively). While the integration constants for this calculation have previously been considered arbitrary, we showed that physiologically meaningful constants can be obtained by identifying "undisturbed pressure" as mean circulatory pressure. Using a series of numeric experiments, absolute P ± and Q ± values were shown to represent "wave potential," gradients of which produce propagating wavefronts. With the aid of a "one-dimensional windkessel," we showed how wave theory predicts discharge of the arterial reservoir. Simulated data, along with hemodynamic recordings in seven sheep, suggested that self-canceling diastolic waves arise from repeated and diffuse reflection of the late systolic forward expansion wave throughout the arterial system and at the closed aortic valve, along with progressive leakage of wave potential from the conduit arteries. The combination of wave and wave potential concepts leads to a comprehensive one-dimensional (i.e., wave-based) explanation of arterial hemodynamics, including the diastolic pressure decay
    • …
    corecore