159 research outputs found

    Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine

    Get PDF
    A biosustainable production route for 3-hydroxypropionic acid (3HP), an important platform chemical, would allow 3HP to be produced without using fossil fuels. We are interested in investigating a potential biochemical route to 3HP from pyruvate through b -alanine and, in this paper, we develop and solve a mathematical model for the reaction kinetics of the metabolites involved in this pathway. We consider two limiting cases, one where the levels of pyruvate are never replenished, the other where the levels of pyruvate are continuously replenished and thus kept constant. We exploit the natural separation of both the time scales and the metabolite concentrations to make significant asymptotic progress in understanding the system without resorting to computationally expensive parameter sweeps. Using our asymptotic results, we are able to predict the most important reactions to maximize the production of 3HP in this system while reducing the maximum amount of the toxic intermediate compound malonic semialdehyde present at any one time, and thus we are able to recommend which enzymes experimentalists should focus on manipulating

    The Effect of Macromolecular Crowding, Ionic Strength and Calcium Binding on Calmodulin Dynamics

    Get PDF
    The flexibility in the structure of calmodulin (CaM) allows its binding to over 300 target proteins in the cell. To investigate the structure-function relationship of CaM, we combined methods of computer simulation and experiments based on circular dichroism (CD) to investigate the structural characteristics of CaM that influence its target recognition in crowded cell-like conditions. We developed a unique multiscale solution of charges computed from quantum chemistry, together with protein reconstruction, coarse-grained molecular simulations, and statistical physics, to represent the charge distribution in the transition from apoCaM to holoCaM upon calcium binding. Computationally, we found that increased levels of macromolecular crowding, in addition to calcium binding and ionic strength typical of that found inside cells, can impact the conformation, helicity and the EF hand orientation of CaM. Because EF hand orientation impacts the affinity of calcium binding and the specificity of CaM's target selection, our results may provide unique insight into understanding the promiscuous behavior of calmodulin in target selection inside cells.Comment: Accepted to PLoS Comp Biol, 201

    A novel approach to estimate the distribution, density and at-sea risks of a centrally-placed mobile marine vertebrate

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Formulating management strategies for mobile marine species is challenging, as knowledge is required of distribution, density, and overlap with putative threats. As a step towards assimilating knowledge, ecological niche models may identify likely suitable habitats for species, but lack the ability to enumerate species densities. Traditionally, this has been catered for by sightings-based distance sampling methods that may have practical and logistical limitations. Here we describe a novel method to estimate at-sea distribution and densities of a marine vertebrate, using historic aerial surveys of Gabonese leatherback turtle (Dermochelys coriacea) nesting beaches and satellite telemetry data of females at sea. We contextualise modelled patterns of distribution with putative threat layers of boat traffic, including fishing vessels and large ship movements, using Vessel Monitoring System (VMS) and Automatic Identification System (AIS) data. We identify key at-sea areas in which protection for inter-nesting leatherback turtles could be considered within the coastal zone of Gabonese Exclusive Economic Zone (EEZ). Our approach offers a holistic technique that merges multiple datasets and methodologies to build a deeper and insightful knowledge base with which to manage known activities at sea. As such, the methodologies presented in this study could be applied to other species of sea turtles for cumulative assessments; and with adaptation, may have utility in defining critical habitats for other central-place foragers such as pinnipeds, or sea bird species. Although our analysis focuses on a single species, we suggest that putative threats identified within this study (fisheries, seismic activity, general shipping) likely apply to other mobile marine vertebrates of conservation concern within Gabonese and central African coastal waters, such as olive ridley sea turtles (Lepidochelys olivacea), humpback dolphins (Sousa teuszii) and humpback whales (Megaptera novaeangliae).We thank the following for support and funding: CARPE (Central African Regional Program for the Environment, Darwin Initiative, EAZA ShellShock Campaign, Gabon Sea Turtle Partnership with funding from the Marine Turtle Conservation Fund (United States Fish and Wildlife Service, U.S. Department of the Interior), Harvest Energy, Large Pelagics Research Centre at the University of Massachusetts (Boston), NERC, Vaalco Energy and the Wildlife Conservation Society. We are sincerely grateful to the field teams and logistics staff who assisted in the aerial and ground surveys and with field-site assistance. BJG and MJW receive funding from the Natural Environment Research Council (NE/J012319/1), the European Union and the Darwin Initiative

    A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer

    Get PDF
    BackgroundHistone deacetylases (HDACs) are crucial components of the oestrogen receptor (ER) transcriptional complex. Preclinically, HDAC inhibitors can reverse tamoxifen/aromatase inhibitor resistance in hormone receptor-positive breast cancer. This concept was examined in a phase II combination trial with correlative end points.MethodsPatients with ER-positive metastatic breast cancer progressing on endocrine therapy were treated with 400 mg of vorinostat daily for 3 of 4 weeks and 20 mg tamoxifen daily, continuously. Histone acetylation and HDAC2 expression in peripheral blood mononuclear cells were also evaluated.ResultsIn all, 43 patients (median age 56 years (31-71)) were treated, 25 (58%) received prior adjuvant tamoxifen, 29 (67%) failed one prior chemotherapy regimen, 42 (98%) progressed after one, and 23 (54%) after two aromatase inhibitors. The objective response rate by Response Evaluation Criteria in Solid Tumours criteria was 19% and the clinical benefit rate (response or stable disease >24 weeks) was 40%. The median response duration was 10.3 months (confidence interval: 8.1-12.4). Histone hyperacetylation and higher baseline HDAC2 levels correlated with response.ConclusionThe combination of vorinostat and tamoxifen is well tolerated and exhibits encouraging activity in reversing hormone resistance. Correlative studies suggest that HDAC2 expression is a predictive marker and histone hyperacetylation is a useful pharmacodynamic marker for the efficacy of this combination

    Movement and habitat use of the snapping turtle in an urban landscape

    Get PDF
    In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems

    Diffusion is capable of translating anisotropic apoptosis initiation into a homogeneous execution of cell death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Apoptosis is an essential cell death process throughout the entire life span of all metazoans and its deregulation in humans has been implicated in many proliferative and degenerative diseases. Mitochondrial outer membrane permeabilisation (MOMP) and activation of effector caspases are key processes during apoptosis signalling. MOMP can be subject to spatial coordination in human cancer cells, resulting in intracellular waves of cytochrome-c release. To investigate the consequences of these spatial anisotropies in mitochondrial permeabilisation on subsequent effector caspase activation, we devised a mathematical reaction-diffusion model building on a set of partial differential equations.</p> <p>Results</p> <p>Reaction-diffusion modelling suggested that even if strong spatial anisotropies existed during mitochondrial cytochrome c release, these would be eliminated by free diffusion of the cytosolic proteins that instantiate the apoptosis execution network. Experimentally, rapid sampling of mitochondrial permeabilisation and effector caspase activity in individual HeLa cervical cancer cells confirmed predictions of the reaction-diffusion model and demonstrated that the signalling network of apoptosis execution could efficiently translate spatial anisotropies in mitochondrial permeabilisation into a homogeneous effector caspase response throughout the cytosol. Further systems modelling suggested that a more than 10,000-fold impaired diffusivity would be required to maintain spatial anisotropies as observed during mitochondrial permeabilisation until the time effector caspases become activated.</p> <p>Conclusions</p> <p>Multi-protein diffusion efficiently contributes to eliminating spatial asynchronies which are present during the initiation of apoptosis execution and thereby ensures homogeneous apoptosis execution throughout the entire cell body. For previously reported biological scenarios in which effector caspase activity was shown to be targeted selectively to specific subcellular regions additional mechanisms must exist that limit or spatially coordinate caspase activation and/or protect diffusing soluble caspase substrates from unwanted proteolysis.</p

    Seasonal Pattern of Batrachochytrium dendrobatidis Infection and Mortality in Lithobates areolatus: Affirmation of Vredenburg's “10,000 Zoospore Rule”

    Get PDF
    To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly—in nearly total isolation from conspecifics—and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding—when mortality occurs—before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later

    Structural, Stability, Dynamic and Binding Properties of the ALS-Causing T46I Mutant of the hVAPB MSP Domain as Revealed by NMR and MD Simulations

    Get PDF
    T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS). Here using CD, NMR and molecular dynamics (MD) simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1) unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cβ NMR chemical shifts. 2) Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3) T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4) EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5) As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis
    corecore