293 research outputs found

    The Intermediate Scale MSSM, the Higgs Mass and F-theory Unification

    Full text link
    Even if SUSY is not present at the Electro-Weak scale, string theory suggests its presence at some scale M_{SS} below the string scale M_s to guarantee the absence of tachyons. We explore the possible value of M_{SS} consistent with gauge coupling unification and known sources of SUSY breaking in string theory. Within F-theory SU(5) unification these two requirements fix M_{SS} ~ 5 x 10^{10} GeV at an intermediate scale and a unification scale M_c ~ 3 x 10^{14} GeV. As a direct consequence one also predicts the vanishing of the quartic Higgs SM self-coupling at M_{SS} ~10^{11} GeV. This is tantalizingly consistent with recent LHC hints of a Higgs mass in the region 124-126 GeV. With such a low unification scale M_c ~ 3 x 10^{14} GeV one may worry about too fast proton decay via dimension 6 operators. However in the F-theory GUT context SU(5) is broken to the SM via hypercharge flux. We show that this hypercharge flux deforms the SM fermion wave functions leading to a suppression, avoiding in this way the strong experimental proton decay constraints. In these constructions there is generically an axion with a scale of size f_a ~ M_c/(4\pi)^2 ~ 10^{12} GeV which could solve the strong CP problem and provide for the observed dark matter. The prize to pay for these attractive features is to assume that the hierarchy problem is solved due to anthropic selection in a string landscape.Comment: 48 pages, 8 figures. v3: further minor correction

    FCNC Processes from D-brane Instantons

    Get PDF
    Low string scale models might be tested at the LHC directly by their Regge resonances. For such models it is important to investigate the constraints of Standard Model precision measurements on the string scale. It is shown that highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic decays of the D0-meson provide non-negligible lower bounds on both the perturbatively and surprisingly also non-perturbatively induced string theory couplings. We present both the D-brane instanton formalism to compute such amplitudes and discuss various possible scenarios and their constraints on the string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file adde

    On hypercharge flux and exotics in F-theory GUTs

    Get PDF
    We study SU(5) Grand Unified Theories within a local framework in F-theory with multiple extra U(1) symmetries arising from a small monodromy group. The use of hypercharge flux for doublet-triplet splitting implies massless exotics in the spectrum that are protected from obtaining a mass by the U(1) symmetries. We find that lifting the exotics by giving vacuum expectation values to some GUT singlets spontaneously breaks all the U(1) symmetries which implies that proton decay operators are induced. If we impose an additional R-parity symmetry by hand we find all the exotics can be lifted while proton decay operators are still forbidden. These models can retain the gauge coupling unification accuracy of the MSSM at 1-loop. For models where the generations are distributed across multiple curves we also present a motivation for the quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen approach to flavour.Comment: 38 pages; v2: emphasised possibility of avoiding exotics in models without a global E8 structure, added ref, journal versio

    Radiative Fermion Masses in Local D-Brane Models

    Full text link
    In the context of D-brane model building, we present a realistic framework for generating fermion masses that are forbidden by global symmetries. We show that the string theoretical Large volume scenario circumvents the standard lore that fermion masses generated by loop effects are too small in generic gravity mediated scenarios. We argue that the fact that in toric singularity models, the up quark masses have always a zero eigenvalue, corresponding to the lightest generation, is due to the presence of approximate global symmetries that we explicitly identify in del Pezzo singularities. These symmetries are broken by global effects and therefore proportional to inverse powers of the volume. We estimate the generic size of radiative corrections to fermion masses in different phenomenological manifestations of the Large volume scenario. Concrete realizations in terms of flavor violating soft-terms are estimated and contrasted with current bounds on flavour changing neutral currents. Contributions from generic extra Higgs-like fields set bounds on their masses close to the GUT scale to produce realistic fermion masses.Comment: 21 pages. v2: minor rewording and reference adde

    Wavefunctions and the Point of E8 in F-theory

    Get PDF
    In F-theory GUTs interactions between fields are typically localised at points of enhanced symmetry in the internal dimensions implying that the coefficient of the associated operator can be studied using a local wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit a maximum symmetry enhancement at a point to E8, and in this case all the operators of the theory can be associated to the same point. We take initial steps towards the study of operators in such theories. We calculate wavefunctions and their overlaps around a general point of enhancement and establish constraints on the local form of the fluxes. We then apply the general results to a simple model at a point of E8 enhancement and calculate some example operators such as Yukawa couplings and dimension-five couplings that can lead to proton decay.Comment: 46 page

    Towards a Systematic Construction of Realistic D-brane Models on a del Pezzo Singularity

    Full text link
    A systematic approach is followed in order to identify realistic D-brane models at toric del Pezzo singularities. Requiring quark and lepton spectrum and Yukawas from D3 branes and massless hypercharge, we are led to Pati-Salam extensions of the Standard Model. Hierarchies of masses, flavour mixings and control of couplings select higher order del Pezzo singularities, minimising the Higgs sector prefers toric del Pezzos with dP3 providing the most successful compromise. Then a supersymmetric local string model is presented with the following properties at low energies: (i) the MSSM spectrum plus a local B-L gauge field or additional Higgs fields depending on the breaking pattern, (ii) a realistic hierarchy of quark and lepton masses and (iii) realistic flavour mixing between quark and lepton families with computable CKM and PMNS matrices, and CP violation consistent with observations. In this construction, kinetic terms are diagonal and under calculational control suppressing standard FCNC contributions. Proton decay operators of dimension 4, 5, 6 are suppressed, and gauge couplings can unify depending on the breaking scales from string scales at energies in the range 10^{12}-10^{16} GeV, consistent with TeV soft-masses from moduli mediated supersymmetry breaking. The GUT scale model corresponds to D3 branes at dP3 with two copies of the Pati-Salam gauge symmetry SU(4)\timesSU(2)R\timesSU(2)L. D-brane instantons generate a non-vanishing mu-term. Right handed sneutrinos can break the B-L symmetry and induce a see-saw mechanism of neutrino masses and R-parity violating operators with observable low-energy implications.Comment: 27 pages plus 5 appendices (42 pages total), 9 figures. v3: equation refs and citation correcte

    Dark Radiation and Dark Matter in Large Volume Compactifications

    Full text link
    We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced by the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE

    D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics

    Full text link
    We discuss general properties of D-brane model building at toric singularities. Using dimer techniques to obtain the gauge theory from the structure of the singularity, we extract results on the matter sector and superpotential of the corresponding gauge theory. We show that the number of families in toric phases is always less than or equal to three, with a unique exception being the zeroth Hirzebruch surface. With the physical input of three generations we find that the lightest family of quarks is massless and the masses of the other two can be hierarchically separated. We compute the CKM matrix for explicit models in this setting and find the singularities possess sufficient structure to allow for realistic mixing between generations and CP violation.Comment: 55 pages, v2: typos corrected, minor comments adde

    Sparticle Spectrum of Large Volume Compactification

    Full text link
    We examine the large volume compactification of Type IIB string theory or its F theory limit and the associated supersymmetry breakdown and soft terms. It is crucial to incorporate the loop-induced moduli mixing, originating from radiative corrections to the Kahler potential. We show that in the presence of moduli mixing, soft scalar masses generically receive a D-term contribution of the order of the gravitino mass m_{3/2} when the visible sector cycle is stabilized by the D-term potential of an anomalous U(1) gauge symmetry, while the moduli-mediated gaugino masses and A-parameters tend to be of the order of m_{3/2}/8pi^2. It is noticed also that a too large moduli mixing can destabilize the large volume solution by making it a saddle point.Comment: 29 page

    Flux and Instanton Effects in Local F-theory Models and Hierarchical Fermion Masses

    Full text link
    We study the deformation induced by fluxes and instanton effects on Yukawa couplings involving 7-brane intersections in local F-theory constructions. In the absence of non-perturbative effects, holomorphic Yukawa couplings do not depend on open string fluxes. On the other hand instanton effects (or gaugino condensation on distant 7-branes) do induce corrections to the Yukawas. The leading order effect may also be captured by the presence of closed string (1,2) IASD fluxes, which give rise to a non-commutative structure. We check that even in the presence of these non-perturbative effects the holomorphic Yukawas remain independent of magnetic fluxes. Although fermion mass hierarchies may be obtained from these non-perturbative effects, they would give identical Yukawa couplings for D-quark and Lepton masses in SU(5) F-theory GUT's, in contradiction with experiment. We point out that this problem may be solved by appropriately normalizing the wavefunctions. We show in a simple toy model how the presence of hypercharge flux may then be responsible for the difference between D-quarks and Lepton masses in local SU(5) GUT's.Comment: 84 pages, 1 figure. v2: minor corrections and references adde
    • …
    corecore