760 research outputs found
Pulsar Results with the Fermi Large Area Telescope
The launch of the Fermi Gamma-ray Space Telescope has heralded a new era in
the study of gamma-ray pulsars. The population of confirmed gamma-ray pulsars
has gone from 6-7 to more than 60, and the superb sensitivity of the Large Area
Telescope (LAT) on Fermi has allowed the detailed study of their spectra and
light curves. Twenty-four of these pulsars were discovered in blind searches of
the gamma-ray data, and twenty-one of these are, at present, radio quiet,
despite deep radio follow-up observations. In addition, millisecond pulsars
have been confirmed as a class of gamma-ray emitters, both individually and
collectively in globular clusters. Recently, radio searches in the direction of
LAT sources with no likely counterparts have been highly productive, leading to
the discovery of a large number of new millisecond pulsars. Taken together,
these discoveries promise a great improvement in the understanding of the
gamma-ray emission properties and Galactic population of pulsars. We summarize
some of the results stemming from these newly-detected pulsars and their timing
and multi-wavelength follow-up observations.Comment: 21 pages, 9 figures, to appear in Proceedings of ICREA Workshop on
The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain,
2010 April 12-16 (Springer
Multifrequency Strategies for the Identification of Gamma-Ray Sources
More than half the sources in the Third EGRET (3EG) catalog have no firmly
established counterparts at other wavelengths and are unidentified. Some of
these unidentified sources have remained a mystery since the first surveys of
the gamma-ray sky with the COS-B satellite. The unidentified sources generally
have large error circles, and finding counterparts has often been a challenging
job. A multiwavelength approach, using X-ray, optical, and radio data, is often
needed to understand the nature of these sources. This chapter reviews the
technique of identification of EGRET sources using multiwavelength studies of
the gamma-ray fields.Comment: 35 pages, 22 figures. Chapter prepared for the book "Cosmic Gamma-ray
Sources", edited by K.S. Cheng and G.E. Romero, to be published by Kluwer
Academic Press, 2004. For complete article and higher resolution figures, go
to: http://www.astro.columbia.edu/~muk/mukherjee_multiwave.pd
Discovery of x-ray pulsations from the integral source IGR J11014−6103
published_or_final_versio
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
Activated Magnetospheres of Magnetars
Like the solar corona, the external magnetic field of magnetars is twisted by
surface motions of the star. The twist energy is dissipated over time. We
discuss the theory of this activity and its observational status. (1) Theory
predicts that the magnetosphere tends to untwist in a peculiar way: a bundle of
electric currents (the "j-bundle") is formed with a sharp boundary, which
shrinks toward the magnetic dipole axis. Recent observations of shrinking hot
spots on magnetars are consistent with this behavior. (2) Continual discharge
fills the j-bundle with electron-positron plasma, maintaining a nonthermal
corona around the neutron star. The corona outside a few stellar radii strongly
interacts with the stellar radiation and forms a "radiatively locked" outflow
with a high e+- multiplicity. The locked plasma annihilates near the apexes of
the closed magnetic field lines. (3) New radiative-transfer simulations suggest
a simple mechanism that shapes the observed X-ray spectrum from 0.1 keV to 1
MeV: part of the thermal X-rays emitted by the neutron star are reflected from
the outer corona and then upscattered by the inner relativistic outflow in the
j-bundle, producing a beam of hard X-rays.Comment: 23 pages, 7 figures; review chapter in the proceedings of ICREA
Workshop on the High-Energy Emission from Pulsars and Their Systems, Sant
Cugat, Spain, April 201
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
Young neutron stars with soft gamma ray emission and anomalous X-ray pulsar
The observational properties of Soft Gamma Repeaters and Ano\-malous X-ray
Pulsars (SGR/AXP) indicate to necessity of the energy source different from a
rotational energy of a neutron star. The model, where the source of the energy
is connected with a magnetic field dissipation in a highly magnetized neutron
star (magnetar) is analyzed. Some observational inconsistencies are indicated
for this interpretation. The alternative energy source, connected with the
nuclear energy of superheavy nuclei stored in the nonequilibrium layer of low
mass neutron star is discussed.Comment: 29 pages, 13 figures, Springer International Publishing Switzerland
2016 A.W. Alsabti, P. Murdin (eds.), Handbook of Supernova
X-ray emission from isolated neutron stars
X-ray emission is a common feature of all varieties of isolated neutron stars
(INS) and, thanks to the advent of sensitive instruments with good
spectroscopic, timing, and imaging capabilities, X-ray observations have become
an essential tool in the study of these objects. Non-thermal X-rays from young,
energetic radio pulsars have been detected since the beginning of X-ray
astronomy, and the long-sought thermal emission from cooling neutron star's
surfaces can now be studied in detail in many pulsars spanning different ages,
magnetic fields, and, possibly, surface compositions. In addition, other
different manifestations of INS have been discovered with X-ray observations.
These new classes of high-energy sources, comprising the nearby X-ray Dim
Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the
Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to
several tens of confirmed members, plus many candidates, and allow us to study
a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant
Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from
pulsars and their systems", held in April, 201
Accretion Disks Around Black Holes: Twenty Five Years Later
We study the progress of the theory of accretion disks around black holes in
last twenty five years and explain why advective disks are the best bet in
explaining varied stationary and non-stationary observations from black hole
candidates. We show also that the recently proposed advection dominated flows
are incorrect.Comment: 30 Latex pages including figures. Kluwer Style files included.
Appearing in `Observational Evidence for Black Holes in the Universe', ed.
Sandip K. Chakrabarti, Kluwer Academic Publishers (DORDRECHT: Holland
Entangled-State Cycles of Atomic Collective-Spin States
We study quantum trajectories of collective atomic spin states of
effective two-level atoms driven with laser and cavity fields. We show that
interesting ``entangled-state cycles'' arise probabilistically when the (Raman)
transition rates between the two atomic levels are set equal. For odd (even)
, there are () possible cycles. During each cycle the
-qubit state switches, with each cavity photon emission, between the states
, where is a Dicke state in a rotated
collective basis. The quantum number (), which distinguishes the
particular cycle, is determined by the photon counting record and varies
randomly from one trajectory to the next. For even it is also possible,
under the same conditions, to prepare probabilistically (but in steady state)
the Dicke state , i.e., an -qubit state with excitations,
which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure
- …
