7,298 research outputs found

    Intermittent energy dissipation by turbulent reconnection

    Get PDF
    Magnetic reconnection—the process responsible for many explosive phenomena in both nature and laboratory—is efficient at dissipating magnetic energy into particle energy. To date, exactly how this dissipation happens remains unclear, owing to the scarcity of multipoint measurements of the “diffusion region” at the sub-ion scale. Here we report such a measurement by Cluster—four spacecraft with separation of 1/5 ion scale. We discover numerous current filaments and magnetic nulls inside the diffusion region of magnetic reconnection, with the strongest currents appearing at spiral nulls (O-lines) and the separatrices. Inside each current filament, kinetic-scale turbulence is significantly increased and the energy dissipation, E′ ⋅ j, is 100 times larger than the typical value. At the jet reversal point, where radial nulls (X-lines) are detected, the current, turbulence, and energy dissipations are surprisingly small. All these features clearly demonstrate that energy dissipation in magnetic reconnection occurs at O-lines but not X-lines

    Topological Crystalline Insulators in the SnTe Material Class

    Get PDF
    Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline insulator in the semiconductor SnTe, by identifying its nonzero topological index. We predict that as a manifestation of this nontrivial topology, SnTe has metallic surface states with an even number of Dirac cones on high-symmetry crystal surfaces such as {001}, {110} and {111}. These surface states form a new type of high-mobility chiral electron gas, which is robust against disorder and topologically protected by reflection symmetry of the crystal with respect to {110} mirror plane. Breaking this mirror symmetry via elastic strain engineering or applying an in-plane magnetic field can open up a continuously tunable band gap on the surface, which may lead to wide-ranging applications in thermoelectrics, infrared detection, and tunable electronics. Closely related semiconductors PbTe and PbSe also become topological crystalline insulators after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5 pages, 4 figure

    Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface

    Get PDF
    Recent theories and experiments have suggested that strong spin-orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic entanglement effects. Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe strongly interacting particles. It has been proposed that a topological insulator with a single spin-textured Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation. Here we present an angle-resolved photoemission spectroscopy study and first-principle theoretical calculation-predictions that reveal the first observation of such a topological state of matter featuring a single-surface-Dirac-cone realized in the naturally occurring Bi2_2Se3_3 class of materials. Our results, supported by our theoretical predictions and calculations, demonstrate that undoped compound of this class of materials can serve as the parent matrix compound for the long-sought topological device where in-plane surface carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.Comment: 3 Figures, 18 pages, Submitted to NATURE PHYSICS in December 200

    Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip

    Get PDF
    Vascular plants rely on differences of osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as M\"unch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems to occur via passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the nonlinear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of M\"unch transport, where phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with the hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies

    Linear Sigma Models with Torsion

    Full text link
    Gauged linear sigma models with (0,2) supersymmetry allow a larger choice of couplings than models with (2,2) supersymmetry. We use this freedom to find a fully linear construction of torsional heterotic compactifications, including models with branes. As a non-compact example, we describe a family of metrics which correspond to deformations of the heterotic conifold by turning on H-flux. We then describe compact models which are gauge-invariant only at the quantum level. Our construction gives a generalization of symplectic reduction. The resulting spaces are non-Kahler analogues of familiar toric spaces like complex projective space. Perturbatively conformal models can be constructed by considering intersections.Comment: 40 pages, LaTeX, 1 figure; references added; a new section on supersymmetry added; quantization condition revisite

    Compactification on negatively curved manifolds

    Get PDF
    We show that string/M theory compactifications to maximally symmetric space-times using manifolds whose scalar curvature is everywhere negative, must have significant warping, large stringy corrections, or both.Comment: 18 pages, JHEP3.cl

    Heterotic Sigma Models with N=2 Space-Time Supersymmetry

    Get PDF
    We study the non-linear sigma model realization of a heterotic vacuum with N=2 space-time supersymmetry. We examine the requirements of (0,2) + (0,4) world-sheet supersymmetry and show that a geometric vacuum must be described by a principal two-torus bundle over a K3 manifold.Comment: 20 pages, uses xy-pic; v3: typos corrected, reference added, discussion of constraints on Hermitian form modifie

    Comparison of two independent systematic reviews of trials of recombinant human bone morphogenetic protein-2 (rhBMP-2) : The Yale Open Data Access Medtronic Project

    Get PDF
    Background: It is uncertain whether the replication of systematic reviews, particularly those with the same objectives and resources, would employ similar methods and/or arrive at identical findings. We compared the results and conclusions of two concurrent systematic reviews undertaken by two independent research teams provided with the same objectives, resources, and individual participant-level data. Methods: Two centers in the USA and UK were each provided with participant-level data on 17 multi-site clinical trials of recombinant human bone morphogenetic protein-2 (rhBMP-2). The teams were blinded to each other's methods and findings until after publication. We conducted a retrospective structured comparison of the results of the two systematic reviews. The main outcome measures included (1) trial inclusion criteria; (2) statistical methods; (3) summary efficacy and risk estimates; and (4) conclusions. Results: The two research teams' meta-analyses inclusion criteria were broadly similar but differed slightly in trial inclusion and research methodology. They obtained similar results in summary estimates of most clinical outcomes and adverse events. Center A incorporated all trials into summary estimates of efficacy and harms, while Center B concentrated on analyses stratified by surgical approach. Center A found a statistically significant, but small, benefit whereas Center B reported no advantage. In the analysis of harms, neither showed an increased cancer risk at 48 months, although Center B reported a significant increase at 24 months. Conclusions reflected these differences in summary estimates of benefit balanced with small but potentially important risk of harm. Conclusions: Two independent groups given the same research objectives, data, resources, funding, and time produced broad general agreement but differed in several areas. These differences, the importance of which is debatable, indicate the value of the availability of data to allow for more than a single approach and a single interpretation of the data. Systematic review registration: PROSPERO CRD42012002040and CRD42012001907

    Altered hemodynamics and vascular reactivity in a mouse model with severe pericyte deficiency

    Full text link
    Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret^{ret/ret} mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret^{ret/ret} mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret^{ret/ret} mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret^{ret/ret} mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2_{2} and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret^{ret/ret} mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret^{ret/ret} mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations
    corecore