425 research outputs found

    Timing of Favorable Conditions, Competition and Fertility Interact to Govern Recruitment of Invasive Chinese Tallow Tree in Stressful Environments

    Get PDF
    The rate of new exotic recruitment following removal of adult invaders (reinvasion pressure) influences restoration outcomes and costs but is highly variable and poorly understood. We hypothesize that broad variation in average reinvasion pressure of Triadica sebifera (Chinese tallow tree, a major invader) arises from differences among habitats in spatiotemporal availability of realized recruitment windows. These windows are periods of variable duration long enough to permit establishment given local environmental conditions. We tested this hypothesis via a greenhouse mesocosm experiment that quantified how the duration of favorable moisture conditions prior to flood or drought stress (window duration), competition and nutrient availability influenced Triadica success in high stress environments. Window duration influenced pre-stress seedling abundance and size, growth during stress and final abundance; it interacted with other factors to affect final biomass and germination during stress. Stress type and competition impacted final size and biomass, plus germination, mortality and changes in size during stress. Final abundance also depended on competition and the interaction of window duration, stress type and competition. Fertilization interacted with competition and stress to influence biomass and changes in height, respectively, but did not affect Triadica abundance. Overall, longer window durations promoted Triadica establishment, competition and drought (relative to flood) suppressed establishment, and fertilization had weak effects. Interactions among factors frequently produced different effects in specific contexts. Results support our β€˜outgrow the stress’ hypothesis and show that temporal availability of abiotic windows and factors that influence growth rates govern Triadica recruitment in stressful environments. These findings suggest that native seed addition can effectively suppress superior competitors in stressful environments. We also describe environmental scenarios where specific management methods may be more or less effective. Our results enable better niche-based estimates of local reinvasion pressure, which can improve restoration efficacy and efficiency by informing site selection and optimal Management

    Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia

    Get PDF
    Pancreatic cancer is a highly lethal malignancy with a dismal 5-year survival of less than 5%. The scarcity of early biomarkers has considerably hindered our ability to launch preventive measures for this malignancy in a timely manner. Neutrophil gelatinase-associated lipocalin (NGAL), a 24-kDa glycoprotein, was reported to be upregulated nearly 27-fold in pancreatic cancer cells compared to normal ductal cells in a microarray analysis. Given the need for biomarkers in the early diagnosis of pancreatic cancer, we investigated the expression of NGAL in tissues with the objective of examining if NGAL immunostaining could be used to identify foci of pancreatic intraepithelial neoplasia, premalignant lesions preceding invasive cancer. To examine a possible correlation between NGAL expression and the degree of differentiation, we also analysed NGAL levels in pancreatic cancer cell lines with varying grades of differentiation. Although NGAL expression was strongly upregulated in pancreatic cancer, and moderately in pancreatitis, only a weak expression could be detected in the healthy pancreas. The average composite score for adenocarcinoma (4.26Β±2.44) was significantly higher than that for the normal pancreas (1.0) or pancreatitis (1.0) (P<0.0001). Further, although both well- and moderately differentiated pancreatic cancer were positive for NGAL, poorly differentiated adenocarcinoma was uniformly negative. Importantly, NGAL expression was detected as early as the PanIN-1 stage, suggesting that it could be a marker of the earliest premalignant changes in the pancreas. Further, we examined NGAL levels in serum samples. Serum NGAL levels were above the cutoff for healthy individuals in 94% of pancreatic cancer and 62.5% each of acute and chronic pancreatitis samples. However, the difference between NGAL levels in pancreatitis and pancreatic cancer was not significant. A ROC curve analysis revealed that ELISA for NGAL is fairly accurate in distinguishing pancreatic cancer from non-cancer cases (area under curve=0.75). In conclusion, NGAL is highly expressed in early dysplastic lesions in the pancreas, suggesting a possible role as an early diagnostic marker for pancreatic cancer. Further, serum NGAL measurement could be investigated as a possible biomarker in pancreatitis and pancreatic adenocarcinoma

    Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes

    Get PDF
    Nucleic acid sensor elements are proving increasingly useful in biotechnology and biomedical applications. A number of ligand-sensing, conformational-switching ribozymes (also known as allosteric ribozymes or aptazymes) have been generated by some combination of directed evolution or rational design. Such sensor elements typically fuse a molecular recognition domain (aptamer) with a catalytic signal generator (ribozyme). Although the rational design of aptazymes has begun to be explored, the relationships between the thermodynamics of aptazyme conformational changes and aptazyme performance in vitro and in vivo have not been examined in a quantitative framework. We have therefore developed a quantitative and predictive model for aptazymes as biosensors in vitro and as riboswitches in vivo. In the process, we have identified key relationships (or dimensionless parameters) that dictate aptazyme performance, and in consequence, established equations for precisely engineering aptazyme function. In particular, our analysis quantifies the intrinsic trade-off between ligand sensitivity and the dynamic range of activity. We were also able to determine how in vivo parameters, such as mRNA degradation rates, impact the design and function of aptazymes when used as riboswitches. Using this theoretical framework we were able to achieve quantitative agreement between our models and published data. In consequence, we are able to suggest experimental guidelines for quantitatively predicting the performance of aptazyme-based riboswitches. By identifying factors that limit the performance of previously published systems we were able to generate immediately testable hypotheses for their improvement. The robust theoretical framework and identified optimization parameters should now enable the precision design of aptazymes for biotechnological and clinical applications

    Extracellular Sulfatases, Elements of the Wnt Signaling Pathway, Positively Regulate Growth and Tumorigenicity of Human Pancreatic Cancer Cells

    Get PDF
    BACKGROUND: Heparan sulfate proteoglycans (HSPGs) are control elements in Wnt signaling, which bind extracellularly to Wnt ligands and regulate their ability to interact with signal transduction receptors on the cell surface. Sulf-1 and Sulf-2 are novel extracellular sulfatases that act on internal glucosamine-6-sulfate (6S) modifications within HSPGs and thereby modulate HSPG interactions with various signaling molecules, including Wnt ligands. Emerging evidence indicates the importance of reactivated Wnt signaling in a number of cancers, including pancreatic adenocarcinoma. PRINCIPLE FINDINGS: Both Sulf proteins were upregulated in human pancreatic adenocarcinoma tumors and were broadly expressed in human pancreatic adenocarcinoma cell lines. Expression of human extracellular sulfatases Sulf-1 and Sulf-2 enhanced Wnt signaling in a reconstituted system. Three of four pancreatic adenocarcinoma cell lines tested exhibited autocrine Wnt signaling, in that extracellular Wnt ligands were required to initiate downstream Wnt signaling. Exposure of these pancreatic adenocarcinoma cells to a catalytically inactive form of Sulf-2 or siRNA-mediated silencing of endogenous Sulf-2 inhibited both Wnt signaling and cell growth. Sulf-2 silencing in two of these lines resulted in markedly reduced tumorigenesis in immunocompromised mice. CONCLUSIONS/SIGNIFICANCE: We have identified the Sulfs as potentiators of autocrine Wnt signaling in pancreatic cancer cells and have demonstrated their contribution to the growth and tumorigenicity of these cells. Since the Sulfs are extracellular enzymes, they would be attractive targets for therapy of pancreatic cancer. Our results run counter to the prevailing view in the literature that the Sulfs are negative regulators of tumorigenesis

    The C-Terminus of Toxoplasma RON2 Provides the Crucial Link between AMA1 and the Host-Associated Invasion Complex

    Get PDF
    Host cell invasion by apicomplexan parasites requires formation of the moving junction (MJ), a ring-like apposition between the parasite and host plasma membranes that the parasite migrates through during entry. The Toxoplasma MJ is a secreted complex including TgAMA1, a transmembrane protein on the parasite surface, and a complex of rhoptry neck proteins (TgRON2/4/5/8) described as host cell-associated. How these proteins connect the parasite and host cell has not previously been described. Here we show that TgRON2 localizes to the MJ and that two short segments flanking a hydrophobic stretch near its C-terminus (D3 and D4) independently associate with the ectodomain of TgAMA1. Pre-incubation of parasites with D3 (fused to glutathione S-transferase) dramatically reduces invasion but does not prevent injection of rhoptry bulb proteins. Hence, the entire C-terminal region of TgRON2 forms the crucial bridge between TgAMA1 and the rest of the MJ complex but this association is not required for rhoptry protein injection

    The Role of For-Profit Actors in Implementing Targeted Sanctions:The Case of the European Union

    Get PDF
    The evolution of sanctions from comprehensive to targeted has favored the inclusion of for-profit actors in the policy process. Sanctions are used to deal with security challenges and while the role of for-profit actors in the provision of public goods has been investigated, less has been said about their role in the provision of security. This chapter investigates the role of for-profit actors in the implementation of sanctions. More specifically, this chapter suggests a typology of regulatory environments that facilitates explaining and understanding the behavior of for-profit actors in implementing targeted sanctions. By looking at the quality of instructions provided by state authorities and their capacity to monitor the implementation of such decisions, the chapter argues that overcompliance, uneven and lack of compliance are more likely in certain regulatory environments rather than in others. The theoretical framework is tested on the case study of the restrictive measures of the EU. The data for this research was collected through semi-opened interviews and focus groups held in Brussels from 2013 to 2015

    Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models

    Get PDF
    Purpose To investigate the robustness of pharmacokinetic modelling of DCE-MRI brain tumour data and to ascertain reliable perfusion parameters through a model selection process and a stability test. Methods DCE-MRI data of 14 patients with primary brain tumours were analysed using the Tofts model (TM), the extended Tofts model (ETM), the shutter speed model (SSM) and the extended shutter speed model (ESSM). A no-effect model (NEM) was implemented to assess overfitting of data by the other models. For each lesion, the Akaike Information Criteria (AIC) was used to build a 3D model selection map. The variability of each pharmacokinetic parameter extracted from this map was assessed with a noise propagation procedure, resulting in voxel-wise distributions of the coefficient of variation (CV). Results The model selection map over all patients showed NEM had the best fit in 35.5% of voxels, followed by ETM (32%), TM (28.2%), SSM (4.3%) and ESSM (<0.1%). In analysing the reliability of Ktrans, when considering regions with a CV<20%, β‰ˆ25% of voxels were found to be stable across all patients. The remaining 75% of voxels were considered unreliable. Conclusions The majority of studies quantifying DCE-MRI data in brain tumours only consider a single model and whole-tumour statistics for the output parameters. Appropriate model selection, considering tissue biology and its effects on blood brain barrier permeability and exchange conditions, together with an analysis on the reliability and stability of the calculated parameters, is critical in processing robust brain tumour DCE-MRI data
    • …
    corecore