507 research outputs found

    Froggatt-Nielsen models from E8 in F-theory GUTs

    Get PDF
    This paper studies F-theory SU(5) GUT models where the three generations of the standard model come from three different curves. All the matter is taken to come from curves intersecting at a point of enhanced E8 gauge symmetry. Giving a vev to some of the GUT singlets naturally implements a Froggatt-Nielsen approach to flavour structure. A scan is performed over all possible models and the results are filtered using phenomenological constraints. We find a unique model that fits observations of quark and lepton masses and mixing well. This model suffers from two drawbacks: R-parity must be imposed by hand and there is a doublet-triplet splitting problem.Comment: 42 pages; v2:journal version; v3:corrected typo in neutrino masse

    Compact F-theory GUTs with U(1)_PQ

    Get PDF
    We construct semi-local and global realizations of SU(5) GUTs in F-theory that utilize a U(1)_PQ symmetry to protect against dimension four proton decay. Symmetries of this type, which assign charges to H_u and H_d that forbid a tree level \mu term, play an important role in scenarios for neutrino physics and gauge mediation that have been proposed in local F-theory model building. As demonstrated in arXiv:0906.4672, the presence of such a symmetry implies the existence of non-GUT exotics in the spectrum, when hypercharge flux is used to break the GUT group and to give rise to doublet-triplet splitting. These exotics are of precisely the right type to solve the unification problem in such F-theory models and might also comprise a non-standard messenger sector for gauge mediation. We present a detailed description of models with U(1)_PQ in the semi-local regime, which does not depend on details of any specific Calabi-Yau four-fold, and then specialize to the geometry of arXiv:0904.3932 to construct three-generation examples with the minimal allowed number of non-GUT exotics. Among these, we find a handful of models in which the D3-tadpole constraint can be satisfied without requiring the introduction of anti-D3-branes. Finally, because SU(5) singlets that carry U(1)_PQ charge may serve as candidate right-handed neutrinos or can be used to lift the exotics, we study their origin in compact models and motivate a conjecture for how to count their zero modes in a semi-local setting.Comment: 73 pages, 5 figures, v2: minor corrections to 4.3 and 6.3.1, reference adde

    On hypercharge flux and exotics in F-theory GUTs

    Get PDF
    We study SU(5) Grand Unified Theories within a local framework in F-theory with multiple extra U(1) symmetries arising from a small monodromy group. The use of hypercharge flux for doublet-triplet splitting implies massless exotics in the spectrum that are protected from obtaining a mass by the U(1) symmetries. We find that lifting the exotics by giving vacuum expectation values to some GUT singlets spontaneously breaks all the U(1) symmetries which implies that proton decay operators are induced. If we impose an additional R-parity symmetry by hand we find all the exotics can be lifted while proton decay operators are still forbidden. These models can retain the gauge coupling unification accuracy of the MSSM at 1-loop. For models where the generations are distributed across multiple curves we also present a motivation for the quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen approach to flavour.Comment: 38 pages; v2: emphasised possibility of avoiding exotics in models without a global E8 structure, added ref, journal versio

    D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics

    Full text link
    We discuss general properties of D-brane model building at toric singularities. Using dimer techniques to obtain the gauge theory from the structure of the singularity, we extract results on the matter sector and superpotential of the corresponding gauge theory. We show that the number of families in toric phases is always less than or equal to three, with a unique exception being the zeroth Hirzebruch surface. With the physical input of three generations we find that the lightest family of quarks is massless and the masses of the other two can be hierarchically separated. We compute the CKM matrix for explicit models in this setting and find the singularities possess sufficient structure to allow for realistic mixing between generations and CP violation.Comment: 55 pages, v2: typos corrected, minor comments adde

    Emerging Non-Anomalous Baryonic Symmetries in the AdS_5/CFT_4 Correspondence

    Full text link
    We study the breaking of baryonic symmetries in the AdS_5/CFT_4 correspondence for D3 branes at Calabi-Yau three-fold singularities. This leads, for particular VEVs, to the emergence of non-anomalous baryonic symmetries during the renormalization group flow. We claim that these VEVs correspond to critical values of the B-field moduli in the dual supergravity backgrounds. We study in detail the C^3/Z_3 orbifold, the cone over F_0 and the C^3/Z_5 orbifold. For the first two examples, we study the dual supergravity backgrounds that correspond to the breaking of the emerging baryonic symmetries and identify the expected Goldstone bosons and global strings in the infra-red. In doing so we confirm the claim that the emerging symmetries are indeed non-anomalous baryonic symmetries.Comment: 65 pages, 15 figures;v2: minor changes, published versio

    Wavefunctions and the Point of E8 in F-theory

    Get PDF
    In F-theory GUTs interactions between fields are typically localised at points of enhanced symmetry in the internal dimensions implying that the coefficient of the associated operator can be studied using a local wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit a maximum symmetry enhancement at a point to E8, and in this case all the operators of the theory can be associated to the same point. We take initial steps towards the study of operators in such theories. We calculate wavefunctions and their overlaps around a general point of enhancement and establish constraints on the local form of the fluxes. We then apply the general results to a simple model at a point of E8 enhancement and calculate some example operators such as Yukawa couplings and dimension-five couplings that can lead to proton decay.Comment: 46 page

    Flux and Instanton Effects in Local F-theory Models and Hierarchical Fermion Masses

    Full text link
    We study the deformation induced by fluxes and instanton effects on Yukawa couplings involving 7-brane intersections in local F-theory constructions. In the absence of non-perturbative effects, holomorphic Yukawa couplings do not depend on open string fluxes. On the other hand instanton effects (or gaugino condensation on distant 7-branes) do induce corrections to the Yukawas. The leading order effect may also be captured by the presence of closed string (1,2) IASD fluxes, which give rise to a non-commutative structure. We check that even in the presence of these non-perturbative effects the holomorphic Yukawas remain independent of magnetic fluxes. Although fermion mass hierarchies may be obtained from these non-perturbative effects, they would give identical Yukawa couplings for D-quark and Lepton masses in SU(5) F-theory GUT's, in contradiction with experiment. We point out that this problem may be solved by appropriately normalizing the wavefunctions. We show in a simple toy model how the presence of hypercharge flux may then be responsible for the difference between D-quarks and Lepton masses in local SU(5) GUT's.Comment: 84 pages, 1 figure. v2: minor corrections and references adde

    F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds

    Full text link
    We present compact three-generation F-theory GUT models meeting in particular the constraints of D3-tadpole cancellation and D-term supersymmetry. To this end we explicitly construct elliptically fibered Calabi-Yau fourfolds as complete intersections in a toric ambient space. Toric methods enable us to control the singular geometry of the SU(5) GUT model. The GUT brane wraps a non-generic del Pezzo surface admitting GUT symmetry breaking via hypercharge flux. It is contractible to a curve and we demonstrate the existence of a consistent decoupling limit. We compute the Euler characteristic of the singular Calabi-Yau fourfold to show that our three-generation flux solutions obtained via the spectral cover construction are consistent with D3-tadpole cancellation.Comment: 22+12 pages; v2: minor clarifications on decoupling limi

    Abelian Gauge Fluxes and Local Models in F-Theory

    Get PDF
    We analyze the Abelian gauge fluxes in local F-theory models with G_S=SU(6) and SO(10). For the case of G_S=SO(10), there is a no-go theorem which states that for an exotic-free spectrum, there are no solutions for U(1)^2 gauge fluxes. We explicitly construct the U(1)^2 gauge fluxes with an exotic-free bulk spectrum for the case of G_S=SU(6). We also analyze the conditions for the curves supporting the given field content and discuss non-minimal spectra of the MSSM with doublet-triplet splitting.Comment: 43 pages, 15 tables; typos corrected, reference adde

    Flavor Structure in F-theory Compactifications

    Full text link
    F-theory is one of frameworks in string theory where supersymmetric grand unification is accommodated, and all the Yukawa couplings and Majorana masses of right-handed neutrinos are generated. Yukawa couplings of charged fermions are generated at codimension-3 singularities, and a contribution from a given singularity point is known to be approximately rank 1. Thus, the approximate rank of Yukawa matrices in low-energy effective theory of generic F-theory compactifications are minimum of either the number of generations N_gen = 3 or the number of singularity points of certain types. If there is a geometry with only one E_6 type point and one D_6 type point over the entire 7-brane for SU(5) gauge fields, F-theory compactified on such a geometry would reproduce approximately rank-1 Yukawa matrices in the real world. We found, however, that there is no such geometry. Thus, it is a problem how to generate hierarchical Yukawa eigenvalues in F-theory compactifications. A solution in the literature so far is to take an appropriate factorization limit. In this article, we propose an alternative solution to the hierarchical structure problem (which requires to tune some parameters) by studying how zero mode wavefunctions depend on complex structure moduli. In this solution, the N_gen x N_gen CKM matrix is predicted to have only N_gen entries of order unity without an extra tuning of parameters, and the lepton flavor anarchy is predicted for the lepton mixing matrix. We also obtained a precise description of zero mode wavefunctions near the E_6 type singularity points, where the up-type Yukawa couplings are generated.Comment: 148 page
    corecore