11,074 research outputs found
Three-body properties of low-lying Be resonances
We compute the three-body structure of the lowest resonances of Be
considered as two neutrons around an inert Be core. This is an extension
of the bound state calculations of Be into the continuum spectrum. We
investigate the lowest resonances of angular momenta and parities, ,
and . Surprisingly enough, they all are naturally occurring in
the three-body model. We calculate bulk structure dominated by small distance
properties as well as decays determined by the asymptotic large-distance
structure. Both and have two-body Be-neutron d-wave
structure, while has an even mixture of and d-waves. The
corresponding relative neutron-neutron partial waves are distributed among ,
, and d-waves. The branching ratios show different mixtures of one-neutron
emission, three-body direct, and sequential decays. We argue for spin and
parities, , and , to the resonances at 0.89, 2.03, 5.13,
respectively. The computed structures are in agreement with existing reaction
measurements.Comment: To be published in Physical Review
Magnetostrictive behaviour of thin superconducting disks
Flux-pinning-induced stress and strain distributions in a thin disk
superconductor in a perpendicular magnetic field is analyzed. We calculate the
body forces, solve the magneto-elastic problem and derive formulas for all
stress and strain components, including the magnetostriction . The
flux and current density profiles in the disk are assumed to follow the Bean
model. During a cycle of the applied field the maximum tensile stress is found
to occur approximately midway between the maximum field and the remanent state.
An effective relationship between this overall maximum stress and the peak
field is found.Comment: 8 pages, 6 figures, submitted to Supercond. Sci. Technol., Proceed.
of MEM03 in Kyot
Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt
Unexpected clustering in the orbital elements of minor bodies beyond the
Kuiper belt has led to speculations that our solar system actually hosts nine
planets, the eight established plus a hypothetical "Planet Nine". Several
recent studies have shown that a planet with a mass of about 10 Earth masses on
a distant eccentric orbit with perihelion far beyond the Kuiper belt could
create and maintain this clustering. The evolutionary path resulting in an
orbit such as the one suggested for Planet Nine is nevertheless not easily
explained. Here we investigate whether a planet scattered away from the
giant-planet region could be lifted to an orbit similar to the one suggested
for Planet Nine through dynamical friction with a cold, distant planetesimal
belt. Recent simulations of planetesimal formation via the streaming
instability suggest that planetesimals can readily form beyond 100au. We
explore this circularisation by dynamical friction with a set of numerical
simulations. We find that a planet that is scattered from the region close to
Neptune onto an eccentric orbit has a 20-30% chance of obtaining an orbit
similar to that of Planet Nine after 4.6Gyr. Our simulations also result in
strong or partial clustering of the planetesimals; however, whether or not this
clustering is observable depends on the location of the inner edge of the
planetesimal belt. If the inner edge is located at 200au the degree of
clustering amongst observable objects is significant.Comment: Accepted to MNRA
The 3-risk approach to pressure ulcer assessment in Norway —safe or a risky business?
Successful prevention of Pressure Ulcers (PU) requires that at-risk patients are identified and provided with a package of measures. In Norway, the use of numerical risk assessment tools like Braden, Norton and Waterlow has never been widespread. Instead, a non-numerical approach based on immobility and clinical judgment is recommended by the National Patient Safety Programme to identify those at risk. This article describes the 3-risk approach to risk assessment, its development and whether an even simpler approach could be safe.måsjekke
Stochastics theory of log-periodic patterns
We introduce an analytical model based on birth-death clustering processes to
help understanding the empirical log-periodic corrections to power-law scaling
and the finite-time singularity as reported in several domains including
rupture, earthquakes, world population and financial systems. In our
stochastics theory log-periodicities are a consequence of transient clusters
induced by an entropy-like term that may reflect the amount of cooperative
information carried by the state of a large system of different species. The
clustering completion rates for the system are assumed to be given by a simple
linear death process. The singularity at t_{o} is derived in terms of
birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge
Systematic Unfoldment of Differential Ontology from Qualitative Concept of Information
A certain philosophical ontology is presented as developed from a qualitative concept of information, leading to conclusive points of possible far-reaching relevance for philosophy and science
Reinforced carbon-carbon oxidation behavior in convective and radiative environments
Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter
- …