57 research outputs found

    Antibacterial effect of calcium hydroxide combined with chlorhexidine on Enterococcus faecalis: a systematic review and meta-analysis

    Get PDF
    Objective: Enterococcus faecalis (E. faecalis) is the most frequently isolated strain in failed endodontic therapy cases since it is resistant to calcium hydroxide (CH). Whether a combination of CH and chlorhexidine (CHX) is more effective than CH alone against E. faecalis is a matter of controversy. Thus, the aim of this study was to conduct a systematic review and meta-analysis of the literature. Material and Methods: A comprehensive search in PubMed, EMbase, EBSCOhost, The Cochrane Library, SciELO, and BBO databases, Clinical trials registers, Open Grey, and conference proceedings from the earliest available date to February 1, 2013 was carried out and the relevant articles were identified by two independent reviewers. Backward and forward search was performed and then inclusion and exclusion criteria were applied. The included studies were divided into "comparisons" according to the depth of sampling and dressing period of each medicament. Meta-analysis was performed using Stata software 10.0. The level of significance was set at 0.05. Results: Eighty-five studies were retrieved from databases and backward/forward searches. Fortyfive studies were considered as relevant (5 in vivo, 18 in vitro, 18 ex vivo, and 4 review articles). Nine studies were included for meta-analysis. Inter-observer agreement (Cohen kappa) was 0.93. The included studies were divided into 21 comparisons for meta-analysis. Chi-square test showed the comparisons were heterogeneous (p<0.001). Random effect model demonstrated no significant difference between CH/CHX mixture and CH alone in their effect on E. faecalis (p=0.115). Conclusions: According to the evidence available now, mixing CH with CHX does not significantly increase the antimicrobial activity of CH against E. faecalis. It appears that mixing CH with CHX does not improve its ex vivo antibacterial property as an intracanal medicament against E. faecalis. Further in vivo studies are necessary to confirm and correlate the findings of this study with the clinical outcomes

    A modern guide to quantitative spectroscopy of massive OB stars

    Full text link
    Quantitative spectroscopy is a powerful technique from which we can extract information about the physical properties and surface chemical composition of stars. In this chapter, I guide the reader through the main ideas required to get initiated in the learning process to become an expert in the application of state-of-the-art quantitative spectroscopic techniques to the study of massive OB stars. NB: This chapter is intended to serve to young students as a first approach to a field which has attracted my attention during the last 20 years. I should note that, despite its importance, at present, the number of real experts in the field around the world is limited to less than 50 people, and about one third of them are close to retirement. Hence, I consider that this is a good moment to write a summary text on the subject to serve as guideline for the next generations of students interested in joining the massive star crew. If you are one of them, please, use this chapter as a first working notebook. Do not stop here. Dig also, for further details, into the literature I quote along the text. And, once there, dig even deeper to find all the original sources explaining in more detail the physical and technical concepts that are presently incorporated into our modern (almost) automatized tools.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds: IV. Porosity in physical and velocity space

    No full text
    © ESO 2018. Context. Clumping in the radiation-driven winds of hot, massive stars severly affects the derivation of synthetic observables across the electromagnetic spectrum. Aims. We implement a formalism for treating wind clumping - focusing in particular on the light-leakage effects associated with a medium that is porous in physical and velocity space - into the global (photosphere + wind) NLTE model atmosphere and spectrum synthesis code FASTWIND. Methods. The basic method presented here assumes a stochastic, two-component wind consisting of a mixture of optically thick and thin clumps embedded in a rarefied inter-clump medium. We have accounted fully for the reductions in opacity associated with porosity in physical and velocity-space (the latter due to Doppler shifts in an accelerating medium), as well as for the well-known effect that opacities depending on 〈ρ 2 〉 are higher in clumpy winds than in smooth ones of equal mass-loss rate. By formulating our method in terms of suitable mean and effective opacities for the clumpy wind, we are able to compute atmospheric models with the same speed (∼15 min on a modern laptop or desktop) as in previous generations of FASTWIND. Results. After verifying important analytic limits (smooth, optically thin, completely optically thick), we present some first, generic results of the new models. These include: i) Confirming earlier results that velocity-space porosity is critical for analysis of UV wind resonance lines in O-stars; ii) for the optical Hα line, we show that optically thick clumping effects are small for O-stars, but potentially very important for late B and A-supergiants; iii) in agreement with previous work, we show that spatial porosity is a marginal effect for absorption of high-energy X-rays in O-stars, as long as the mean-free path between clumps are kept at realistic values ≲ R ∗ ; iv) whereas radio absorption in O-stars shows strong spatial porosity effects in near photospheric layers, it is negligible at their typical radio-photosphere radii ∼100R ∗ ; v) regarding the wind ionization balance, a general trend is that increased rates of recombination in simulations with optically thin clumps lead to overall lower degrees of ionization than in corresponding smooth models, but that this effect now is counteracted by the increased levels of light-leakage associated with porosity in physical and velocity space (i.e., by an increase of ionization rates). We conclude by discussing future work and some planned applications for this new generation of FASTWIND models.status: publishe

    Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    No full text
    status: publishe

    3D radiative transfer: Continuum and line scattering in non-spherical winds from OB stars

    No full text
    © ESO 2018. Context. State of the art quantitative spectroscopy utilizes synthetic spectra to extract information from observations. For hot, massive stars, these synthetic spectra are calculated by means of 1D, spherically symmetric, NLTE atmosphere and spectrum-synthesis codes. Certain stellar atmospheres, however, show strong deviations from spherical symmetry, and need to be treated in 3D. Aims. We present and test a newly developed 3D radiative transfer code, tailored to the solution of the radiation field in rapidly expanding stellar atmospheres. We apply our code to the continuum transfer in wind-ablation models, and to the UV resonance line formation in magnetic winds. Methods. We have used a 3D finite-volume method for the solution of the time-independent equation of radiative transfer, to study continuum- and line-scattering problems, currently approximated by a two-level-atom. Convergence has been accelerated by coupling the formal solver to a non-local approximate Λ-iteration scheme. Particular emphasis has been put on careful tests, by comparing with alternative solutions for 1D, spherically symmetric model atmospheres. These tests allowed us to understand certain shortcomings of the methods, and to estimate limiting cases that can actually be calculated. Results. The typical errors of the converged source functions, when compared to 1D solutions, are of the order of 10-20%, and rapidly increase for optically thick (τ ≳ 10) continua, mostly due to the order of accuracy of our solution scheme. In circumstellar discs, the radiation temperatures in the (optically thin) transition region from wind to disc are quite similar to corresponding values in the wind. For MHD simulations of dynamical magnetospheres, the line profiles, calculated with our new 3D code, agree well with previous solutions using a 3D-SEI method. When compared with profiles resulting from the so-called analytic dynamical magnetosphere (ADM) model, however, significant differences become apparent. Conclusions. Due to similar radiation temperatures in the wind and the transition region to the disc, the same line-strength distribution can be applied within radiation hydrodynamic calculations for optically thick circumstellar discs in "accreting high-mass stars". To properly describe the UV line formation in dynamical magnetospheres, the ADM model needs to be further developed, at least in a large part of the outer wind.status: publishe

    Formation of wind-captured disks in supergiant X-ray binaries Consequences for Vela X-1 and Cygnus X-1

    No full text
    © ESO 2019. Context. In supergiant X-ray binaries (SgXB), a compact object captures a fraction of the wind of an O/B supergiant on a close orbit. Proxies exist to evaluate the efficiency of mass and angular momentum accretion, but they depend so dramatically on the wind speed that given the current uncertainties, they only set loose constraints. Furthermore, these proxies often bypass the impact of orbital and shock effects on the flow structure. Aims. We study the wind dynamics and angular momentum gained as the flow is accreted. We identify the conditions for the formation of a disk-like structure around the accretor and the observational consequences for SgXB. Methods. We used recent results on the wind launching mechanism to compute 3D streamlines, accounting for the gravitational and X-ray ionizing influence of the compact companion on the wind. Once the flow enters the Roche lobe of the accretor, we solved the hydrodynamics equations with cooling. Results. A shocked region forms around the accretor as the flow is beamed. For wind speeds on the order of the orbital speed, the shock is highly asymmetric compared to the axisymmetric bow shock obtained for a purely planar homogeneous flow. With net radiative cooling, the flow always circularizes for sufficiently low wind speeds. Conclusions. Although the donor star does not fill its Roche lobe, the wind can be significantly beamed and bent by the orbital effects. The net angular momentum of the accreted flow is then sufficient to form a persistent disk-like structure. This mechanism could explain the proposed limited outer extension of the accretion disk in Cygnus X-1 and suggests the presence of a disk at the outer rim of the neutron star magnetosphere in Vela X-1 and has dramatic consequences on the spinning up of the accretor.status: publishe
    corecore