302 research outputs found
Boundary Terms, Spinors and Kerr/CFT
Similarly as in AdS/CFT, the requirement that the action for spinors be
stationary for solutions to the Dirac equation with fixed boundary conditions
determines the form of the boundary term that needs to be added to the standard
Dirac action in Kerr/CFT. We determine this boundary term and make use of it to
calculate the two-point function for spinor fields in Kerr/CFT. This two-point
function agrees with the correlator of a two dimensional relativistic conformal
field theory.Comment: 15 page
Changes in Parasite Virulence Induced by the Disruption of a Single Member of the 235 kDa Rhoptry Protein Multigene Family of Plasmodium yoelii
Invasion of the erythrocyte by the merozoites of the malaria parasite is a
complex process involving a range of receptor-ligand interactions. Two protein
families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding
Protein Homologues (RH) play an important role in host cell recognition by the
merozoite. In the rodent malaria parasite, Plasmodium yoelii,
the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are
members of the RH. In P. yoelii Py235 as well as a single
member of EBL have been shown to be key mediators of virulence enabling the
parasite to invade a wider range of host erythrocytes. One member of Py235,
PY01365 is most abundantly transcribed in parasite
populations and the protein specifically binds to erythrocytes and is recognized
by the protective monoclonal antibody 25.77, suggesting a key role of this
particular member in virulence. Recent studies have indicated that overall
levels of Py235 expression are essential for parasite virulence. Here we show
that disruption of PY01365 in the virulent YM line directly
impacts parasite virulence. Furthermore the disruption of
PY01365 leads to a reduction in the number of schizonts
that express members of Py235 that react specifically with the mcAb 25.77.
Erythrocyte binding assays show reduced binding of Py235 to red blood cells in
the PY01365 knockout parasite as compared to YM. While our
results identify PY01365 as a mediator of parasite virulence,
they also confirm that other members of Py235 are able to substitute for
PY01365
In Vitro Effects of Pirfenidone on Cardiac Fibroblasts: Proliferation, Myofibroblast Differentiation, Migration and Cytokine Secretion
Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling
PfRH5: A Novel Reticulocyte-Binding Family Homolog of Plasmodium falciparum that Binds to the Erythrocyte, and an Investigation of Its Receptor
Multiple interactions between parasite ligands and their receptors on the human erythrocyte are a condition of successful Plasmodium falciparum invasion. The identification and characterization of these receptors presents a major challenge in the effort to understand the mechanism of invasion and to develop the means to prevent it. We describe here a novel member of the reticulocyte-binding family homolog (RH) of P. falciparum, PfRH5, and show that it binds to a previously unrecognized receptor on the RBC. PfRH5 is expressed as a 63 kDa protein and localized at the apical end of the invasive merozoite. We have expressed a fragment of PfRH5 which contains the RBC-binding domain and exhibits the same pattern of interactions with the RBC as the parent protein. Attachment is inhibited if the target cells are exposed to high concentrations of trypsin, but not to lower concentrations or to chymotrypsin or neuraminidase. We have determined the affinity, copy number and apparent molecular mass of the receptor protein. Thus, we have shown that PfRH5 is a novel erythrocyte-binding ligand and the identification and partial characterization of the new RBC receptor may indicate the existence of an unrecognized P. falciparum invasion pathwa
Acousto-optical Scanning-Based High-Speed 3D Two-Photon Imaging In Vivo.
Recording of the concerted activity of neuronal assemblies and the dendritic and axonal signal integration of downstream neurons pose different challenges, preferably a single recording system should perform both operations. We present a three-dimensional (3D), high-resolution, fast, acousto-optic two-photon microscope with random-access and continuous trajectory scanning modes reaching a cubic millimeter scan range (now over 950 × 950 × 3000 μm3) which can be adapted to imaging different spatial scales. The resolution of the system allows simultaneous functional measurements in many fine neuronal processes, even in dendritic spines within a central core (>290 × 290 × 200 μm3) of the total scanned volume. Furthermore, the PSF size remained sufficiently low (PSFx < 1.9 μm, PSFz < 7.9 μm) to target individual neuronal somata in the whole scanning volume for simultaneous measurement of activity from hundreds of cells. The system contains new design concepts: it allows the acoustic frequency chirps in the deflectors to be adjusted dynamically to compensate for astigmatism and optical errors; it physically separates the z-dimension focusing and lateral scanning functions to optimize the lateral AO scanning range; it involves a custom angular compensation unit to diminish off-axis angular dispersion introduced by the AO deflectors, and it uses a high-NA, wide-field objective and high-bandwidth custom AO deflectors with large apertures. We demonstrate the use of the microscope at different spatial scales by first showing 3D optical recordings of action potential back propagation and dendritic Ca2+ spike forward propagation in long dendritic segments in vitro, at near-microsecond temporal resolution. Second, using the same microscope we show volumetric random-access Ca2+ imaging of spontaneous and visual stimulation-evoked activity from hundreds of cortical neurons in the visual cortex in vivo. The selection of active neurons in a volume that respond to a given stimulus was aided by the real-time data analysis and the 3D interactive visualization accelerated selection of regions of interest
RAGE does not contribute to renal injury and damage upon ischemia/reperfusion-induced injury.
Item does not contain fulltextThe receptor for advanced glycation end products (RAGE) mediates a variety of inflammatory responses in renal diseases, but its role in renal ischemia/reperfusion (I/R) injury is unknown. We showed that during renal I/R, RAGE ligands HMGB1 and S100B are expressed. However, RAGE deficiency does not affect renal injury and function upon I/R-induced injury
Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision
- …