1,741 research outputs found

    Genetic steps to organ laterality in zebrafish.

    Get PDF
    All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals

    Void Growth in BCC Metals Simulated with Molecular Dynamics using the Finnis-Sinclair Potential

    Full text link
    The process of fracture in ductile metals involves the nucleation, growth, and linking of voids. This process takes place both at the low rates involved in typical engineering applications and at the high rates associated with dynamic fracture processes such as spallation. Here we study the growth of a void in a single crystal at high rates using molecular dynamics (MD) based on Finnis-Sinclair interatomic potentials for the body-centred cubic (bcc) metals V, Nb, Mo, Ta, and W. The use of the Finnis-Sinclair potential enables the study of plasticity associated with void growth at the atomic level at room temperature and strain rates from 10^9/s down to 10^6/s and systems as large as 128 million atoms. The atomistic systems are observed to undergo a transition from twinning at the higher end of this range to dislocation flow at the lower end. We analyze the simulations for the specific mechanisms of plasticity associated with void growth as dislocation loops are punched out to accommodate the growing void. We also analyse the process of nucleation and growth of voids in simulations of nanocrystalline Ta expanding at different strain rates. We comment on differences in the plasticity associated with void growth in the bcc metals compared to earlier studies in face-centred cubic (fcc) metals.Comment: 24 pages, 12 figure

    Development of a neutron radiography simulation model

    Get PDF
    Measurement models of NDE techniques have been developed with the purpose of proving the capabilities of NDE techniques for finding flaws. The models take NDE parameters such as ultrasonic frequency, probe diameter, and angle of incidence, and predict the response from the flaw. Models are also a part of quantitative NDE, i.e., the ability to size and characterize flaws and or materials

    Holographic non-relativistic fermionic fixed point by the charged dilatonic black hole

    Full text link
    Driven by the landscape of garden-variety condensed matter systems, we have investigated how the dual spectral function behaves at the non-relativistic as well as relativistic fermionic fixed point by considering the probe Dirac fermion in an extremal charged dilatonic black hole with zero entropy. Although the pattern for both of the appearance of flat band and emergence of Fermi surface is qualitatively similar to that given by the probe fermion in the extremal Reissner-Nordstrom AdS black hole, we find a distinctly different low energy behavior around the Fermi surface, which can be traced back to the different near horizon geometry. In particular, with the peculiar near horizon geometry of our extremal charged dilatonic black hole, the low energy behavior exhibits the universal linear dispersion relation and scaling property, where the former indicates that the dual liquid is a Fermi one while the latter implies that the dual liquid is not exactly of Landau Fermi type

    A novel method to detect rare variants using both family and unrelated case-control data

    Get PDF
    To detect rare variants associated with a phenotype, we develop a novel statistical method that can use both family and unrelated case-control data. Unlike the currently existing methods, we first use family data to calculate weights to be given to rare variants, differentiating between concordantly affected and discordant sib pairs. These weights are then used in an association test applied to the unrelated case-control data. We applied the proposed method to the simulated sequencing data in Genetic Analysis Workshop 17 and identified two genes associated with the disease

    The relationship between sensory sensitivity and autistic traits in the general population.

    Get PDF
    Individuals with Autism Spectrum Disorders (ASDs) tend to have sensory processing difficulties (Baranek et al. in J Child Psychol Psychiatry 47:591–601, 2006). These difficulties include over- and under-responsiveness to sensory stimuli, and problems modulating sensory input (Ben-Sasson et al. in J Autism Dev Disorders 39:1–11, 2009). As those with ASD exist at the extreme end of a continuum of autistic traits that is also evident in the general population, we investigated the link between ASD and sensory sensitivity in the general population by administering two questionnaires online to 212 adult participants. Results showed a highly significant positive correlation (r = .775, p < .001) between number of autistic traits and the frequency of sensory processing problems. These data suggest a strong link between sensory processing and autistic traits in the general population, which in turn potentially implicates sensory processing problems in social interaction difficulties

    Collective intelligence for promoting changes in behaviour: a case study on energy conservation

    Get PDF
    Climate change is one of the biggest challenges humanity faces today. Despite of high investments in technology, battling climate change is futile without the participation of the public, and changing their perception and habits. Collective intelligence tools can play an important role in translating this “distant” concept that is climate change into practical hints for everyday life. In this paper, we report a case study grounded on collective intelligence tools to collaboratively build knowledge around energy conservation. A preliminary study to raise energy awareness in an academic environment is summarised, setting the scene to a more ambitious initiative based on personal stories to transform energy awareness into behaviour change. The role of the collective intelligence tools and other technical artefacts involved are discussed, suggesting strategies and features that contributed (or not) to users’ engagement and collective awareness. Lessons learned from both studies are reported with a sociotechnical approach as implications for design pursuing behaviour change

    Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    Get PDF
    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog

    SNPs and Other Features as They Predispose to Complex Disease: Genome-Wide Predictive Analysis of a Quantitative Phenotype for Hypertension

    Get PDF
    Though recently they have fallen into some disrepute, genome-wide association studies (GWAS) have been formulated and applied to understanding essential hypertension. The principal goal here is to use data gathered in a GWAS to gauge the extent to which SNPs and their interactions with other features can be combined to predict mean arterial blood pressure (MAP) in 3138 pre-menopausal and naturally post-menopausal white women. More precisely, we quantify the extent to which data as described permit prediction of MAP beyond what is possible from traditional risk factors such as blood cholesterol levels and glucose levels. Of course, these traditional risk factors are genetic, though typically not explicitly so. In all, there were 44 such risk factors/clinical variables measured and 377,790 single nucleotide polymorphisms (SNPs) genotyped. Data for women we studied are from first visit measurements taken as part of the Atherosclerotic Risk in Communities (ARIC) study. We begin by assessing non-SNP features in their abilities to predict MAP, employing a novel regression technique with two stages, first the discovery of main effects and next discovery of their interactions. The long list of SNPs genotyped is reduced to a manageable list for combining with non-SNP features in prediction. We adapted Efron's local false discovery rate to produce this reduced list. Selected non-SNP and SNP features and their interactions are used to predict MAP using adaptive linear regression. We quantify quality of prediction by an estimated coefficient of determination (R2). We compare the accuracy of prediction with and without information from SNPs

    Pre-analytic variables and phospho-specific antibodies: the Achilles heel of immunohistochemistry

    Get PDF
    Immunohistochemistry is the most common method for companion diagnostic testing in breast cancer. The readings for estrogen receptor, progesterone receptor, and Her2 directly affect prescription of critical therapies. However, immunohistochemistry is highly sensitive to innumerable pre-analytic variables that result in loss of signal in these assays. Perhaps the most significant pre-analytic variable is cold ischemic time. The work of Pinhel and colleagues in the previous issue of Breast Cancer Research examines the effects of cold ischemic time and finds a chilling result. The authors show that while the classic markers may be only mildly affected, phospho-specific markers are highly sensitive to this artifact. As a result, it is likely that future companion diagnostic tests that include phospho-specific epitopes will be reliably done only in core needle biopsies that minimize ischemic time
    corecore