121 research outputs found

    Emergence of structural and dynamical properties of ecological mutualistic networks

    Full text link
    Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants plays a key role in the organization of ecological communities. Such networks in ecology have generically evolved a nested architecture independent of species composition and latitude - specialists interact with proper subsets of the nodes with whom generalists interact. Despite sustained efforts to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus. Here we demonstrate that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, as also the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by an amount that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, while remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we analytically show that the abundance of the rarest species is directly linked to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks.Comment: 10 pages, 4 figure

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Quasar Sightline and Galaxy Evolution (QSAGE) - III. The mass-metallicity and fundamental metallicity relation of z ≈ 2.2 galaxies

    Get PDF
    We present analysis of the mass-metallicity relation (MZR) for a sample of 67 [O iii]-selected star-forming (SF) galaxies at a redshift range of z = 1.99-2.32 (zmed = 2.16) using Hubble Space Telescope Wide Field Camera 3 grism spectroscopy from the Quasar Sightline and Galaxy Evolution survey. Metallicities were determined using empirical gas-phase metallicity calibrations based on the strong emission lines [O ii]3727, 3729, [O iii]4959, 5007 and Hβ. SF galaxies were identified, and distinguished from active-galactic nuclei, via Mass-Excitation diagrams. Using z ∼0 metallicity calibrations, we observe a negative offset in the z = 2.2 MZR of ≈-0.51 dex in metallicity when compared to locally derived relationships, in agreement with previous literature analysis. A similar offset of ≈-0.46 dex in metallicity is found when using empirical metallicity calibrations that are suitable out to z ∼5, though our z = 2.2 MZR, in this case, has a shallower slope. We find agreement between our MZR and those predicted from various galaxy evolution models and simulations. Additionally, we explore the extended fundamental metallicity relation (FMR) which includes an additional dependence on star formation rate. Our results consistently support the existence of the FMR, as well as revealing an offset of 0.28 ± 0.04 dex in metallicity compared to locally derived relationships, consistent with previous studies at similar redshifts. We interpret the negative correlation with SFR at fixed mass, inferred from an FMR existing for our sample, as being caused by the efficient accretion of metal-poor gas fuelling SFR at cosmic noon

    Acousto-optical Scanning-Based High-Speed 3D Two-Photon Imaging In Vivo.

    Get PDF
    Recording of the concerted activity of neuronal assemblies and the dendritic and axonal signal integration of downstream neurons pose different challenges, preferably a single recording system should perform both operations. We present a three-dimensional (3D), high-resolution, fast, acousto-optic two-photon microscope with random-access and continuous trajectory scanning modes reaching a cubic millimeter scan range (now over 950 × 950 × 3000 μm3) which can be adapted to imaging different spatial scales. The resolution of the system allows simultaneous functional measurements in many fine neuronal processes, even in dendritic spines within a central core (>290 × 290 × 200 μm3) of the total scanned volume. Furthermore, the PSF size remained sufficiently low (PSFx < 1.9 μm, PSFz < 7.9 μm) to target individual neuronal somata in the whole scanning volume for simultaneous measurement of activity from hundreds of cells. The system contains new design concepts: it allows the acoustic frequency chirps in the deflectors to be adjusted dynamically to compensate for astigmatism and optical errors; it physically separates the z-dimension focusing and lateral scanning functions to optimize the lateral AO scanning range; it involves a custom angular compensation unit to diminish off-axis angular dispersion introduced by the AO deflectors, and it uses a high-NA, wide-field objective and high-bandwidth custom AO deflectors with large apertures. We demonstrate the use of the microscope at different spatial scales by first showing 3D optical recordings of action potential back propagation and dendritic Ca2+ spike forward propagation in long dendritic segments in vitro, at near-microsecond temporal resolution. Second, using the same microscope we show volumetric random-access Ca2+ imaging of spontaneous and visual stimulation-evoked activity from hundreds of cortical neurons in the visual cortex in vivo. The selection of active neurons in a volume that respond to a given stimulus was aided by the real-time data analysis and the 3D interactive visualization accelerated selection of regions of interest

    Malignant lymphomas (ML) and HIV infection in Tanzania

    Get PDF
    \ud HIV infection is reported to be associated with some malignant lymphomas (ML) so called AIDS-related lymphomas (ARL), with an aggressive behavior and poor prognosis. The ML frequency, pathogenicity, clinical patterns and possible association with AIDS in Tanzania, are not well documented impeding the development of preventive and therapeutic strategies. Sections of 176 archival formalin-fixed paraffin-embedded biopsies of ML patients at Muhimbili National Hospital (MNH)/Muhimbili University of Health and Allied Sciences (MUHAS), Tanzania from 1996-2001 were stained for hematoxylin and eosin and selected (70) cases for expression of pan-leucocytic (CD45), B-cell (CD20), T-cell (CD3), Hodgkin/RS cell (CD30), histiocyte (CD68) and proliferation (Ki-67) antigen markers. Corresponding clinical records were also evaluated. Available sera from 38 ML patients were screened (ELISA) for HIV antibodies. The proportion of ML out of all diagnosed tumors at MNH during the 6 year period was 4.2% (176/4200) comprising 77.84% non-Hodgkin (NHL) including 19.32% Burkitt's (BL) and 22.16% Hodgkin's disease (HD). The ML tumors frequency increased from 0.42% (1997) to 0.70% (2001) and 23.7% of tested sera from these patients were HIV positive. The mean age for all ML was 30, age-range 3-91 and peak age was 1-20 years. The male:female ratio was 1.8:1. Supra-diaphragmatic presentation was commonest and histological sub-types were mostly aggressive B-cell lymphomas however, no clear cases of primary effusion lymphoma (PEL) and primary central nervous system lymphoma (PCNSL) were diagnosed. Malignant lymphomas apparently, increased significantly among diagnosed tumors at MNH between 1996 and 2001, predominantly among the young, HIV infected and AIDS patients. The frequent aggressive clinical and histological presentation as well as the dominant B-immunophenotype and the HIV serology indicate a pathogenic association with AIDS. Therefore, routine HIV screening of all malignant lymphoma patients at MNH is necessary to enable comprehensive ARL diagnosis and formulation of preventive and therapeutic protocols.\u

    Practical and Theoretical Considerations in Study Design for Detecting Gene-Gene Interactions Using MDR and GMDR Approaches

    Get PDF
    Detection of interacting risk factors for complex traits is challenging. The choice of an appropriate method, sample size, and allocation of cases and controls are serious concerns. To provide empirical guidelines for planning such studies and data analyses, we investigated the performance of the multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) methods under various experimental scenarios. We developed the mathematical expectation of accuracy and used it as an indicator parameter to perform a gene-gene interaction study. We then examined the statistical power of GMDR and MDR within the plausible range of accuracy (0.50∼0.65) reported in the literature. The GMDR with covariate adjustment had a power of>80% in a case-control design with a sample size of≥2000, with theoretical accuracy ranging from 0.56 to 0.62. However, when the accuracy was<0.56, a sample size of≥4000 was required to have sufficient power. In our simulations, the GMDR outperformed the MDR under all models with accuracy ranging from 0.56∼0.62 for a sample size of 1000–2000. However, the two methods performed similarly when the accuracy was outside this range or the sample was significantly larger. We conclude that with adjustment of a covariate, GMDR performs better than MDR and a sample size of 1000∼2000 is reasonably large for detecting gene-gene interactions in the range of effect size reported by the current literature; whereas larger sample size is required for more subtle interactions with accuracy<0.56

    B-Cyclin/CDKs Regulate Mitotic Spindle Assembly by Phosphorylating Kinesins-5 in Budding Yeast

    Get PDF
    Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCFCdc4 ubiquitin ligase are required for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that, in budding yeast, B-type cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and Cin8 by the anaphase-promoting complex (APCCdh1). We have determined, however, that the Kip1 and Cin8 proteins are present at wild-type levels in the absence of Clb/Cdc28 kinase activity. Here, we show that Kip1 and Cin8 are in vitro targets of Clb2/Cdc28 and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation without affecting the protein's in vivo localization or abundance. Mass spectrometry analysis confirms that two CDK sites in the tail domain of Kip1 are phosphorylated in vivo. In addition, we have determined that Sic1, a Clb/Cdc28-specific inhibitor, is the SCFCdc4 target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, we propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    • …
    corecore