15 research outputs found

    CARD15/NOD2 Is Required for Peyer's Patches Homeostasis in Mice

    Get PDF
    BACKGROUND: CARD15/NOD2 mutations are associated with susceptibility to Crohn's Disease (CD) and Graft Versus Host Disease (GVHD). CD and GVHD are suspected to be related with the dysfunction of Peyer's patches (PP) and isolated lymphoid follicles (LFs). Using a new mouse model invalidated for Card15/Nod2 (KO), we thus analysed the impact of the gene in these lymphoid formations together with the development of experimental colitis. METHODOLOGY/PRINCIPAL FINDINGS: At weeks 4, 12 and 52, the numbers of PPs and LFs were higher in KO mice while no difference was observed at birth. At weeks 4 and 12, the size and cellular composition of PPs were analysed by flow cytometry and immunohistochemistry. PPs of KO mice were larger with an increased proportion of M cells and CD4(+) T-cells. KO mice were also characterised by higher concentrations of TNFalpha, IFNgamma, IL12 and IL4 measured by ELISA. In contrast, little differences were found in the PP-free ileum and the spleen of KO mice. By using chamber experiments, we found that this PP phenotype is associated with an increased of both paracellular permeability and yeast/bacterial translocation. Finally, KO mice were more susceptible to the colitis induced by TNBS. CONCLUSIONS: Card15/Nod2 deficiency induces an abnormal development and function of the PPs characterised by an exaggerated immune response and an increased permeability. These observations provide a comprehensive link between the molecular defect and the Human CARD15/NOD2 associated disorders: CD and GVHD

    Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells

    No full text
    Claudin proteins comprise a recently described family of tight junction proteins that differentially regulate paracellular permeability. Since other tight junction proteins show alterations in distribution or expression in inflammatory bowel disease (IBD) we assessed expression of claudins (CL) 2, 3 and 4 in IBD. CL 2 was strongly expressed along the inflamed crypt epithelium, whilst absent or barely detectable in normal colon. In contrast, CL 3 and 4 were present throughout normal colonic epithelium and were reduced or redistributed in the diseased surface epithelium. In a T84-cell culture model of the gut barrier, paracellular permeability decreased with time after plating and correlated with a marked decrease in the expression of CL 2. Addition of IFN/TNF led to further decreases in CL 2 and 3, the redistribution of CL 4 and a marked increase in paracellular permeability. Conversely, IL-13 dramatically increased CL 2, with little effect on CL 3 or 4, but also resulted in increased paracellular permeability. Expression of CL 2 did not correlate with proliferation or junctional reorganisation after calcium ion depletion. Re-expression of CL 2 in response to IL-13 was inhibited by phophatidylinositol 3 kinase inhibitor, LY294002, which also restored the ion permeability to previous levels. CL 2 expression could be stimulated in the absence of IL-13 by activation of phospho-Akt in the phophatidylinositol 3 kinase pathway. These results suggest that INF/TNF and IL-13 have differential effects on CL 2, 3 and 4 in tight junctions, which may lead to increased permeability via different mechanisms
    corecore