508 research outputs found

    Higher Spins in AdS and Twistorial Holography

    Get PDF
    In this paper we simplify and extend previous work on three-point functions in Vasiliev's higher spin gauge theory in AdS4. We work in a gauge in which the space-time dependence of Vasiliev's master fields is gauged away completely, leaving only the internal twistor-like variables. The correlation functions of boundary operators can be easily computed in this gauge. We find complete agreement of the tree level three point functions of higher spin currents in Vasiliev's theory with the conjectured dual free O(N) vector theory.Comment: 23 pages. v3: minor errors fixed, added comments and reference

    Higher Spin Gravity with Matter in AdS_3 and Its CFT Dual

    Full text link
    We study Vasiliev's system of higher spin gauge fields coupled to massive scalars in AdS_3, and compute the tree level two and three point functions. These are compared to the large N limit of the W_N minimal model, and nontrivial agreements are found. We propose a modified version of the conjecture of Gaberdiel and Gopakumar, under which the bulk theory is perturbatively dual to a subsector of the CFT that closes on the sphere.Comment: 58 pages; typos corrected, references adde

    Asymptotic W-symmetries in three-dimensional higher-spin gauge theories

    Full text link
    We discuss how to systematically compute the asymptotic symmetry algebras of generic three-dimensional bosonic higher-spin gauge theories in backgrounds that are asymptotically AdS. We apply these techniques to a one-parameter family of higher-spin gauge theories that can be considered as large N limits of SL(N) x SL(N) Chern-Simons theories, and we provide a closed formula for the structure constants of the resulting infinite-dimensional non-linear W-algebras. Along the way we provide a closed formula for the structure constants of all classical W_N algebras. In both examples the higher-spin generators of the W-algebras are Virasoro primaries. We eventually discuss how to relate our basis to a non-primary quadratic basis that was previously discussed in literature.Comment: 61 page

    Higher Spin Gauge Theory and Holography: The Three-Point Functions

    Full text link
    In this paper we calculate the tree level three-point functions of Vasiliev's higher spin gauge theory in AdS4 and find agreement with the correlators of the free field theory of N massless scalars in three dimensions in the O(N) singlet sector. This provides substantial evidence that Vasiliev theory is dual to the free field theory, thus verifying a conjecture of Klebanov and Polyakov. We also find agreement with the critical O(N) vector model, when the bulk scalar field is subject to the alternative boundary condition such that its dual operator has classical dimension 2.Comment: 90 pages, 5 figures; v4, minor changes in the introductio

    Light States in Chern-Simons Theory Coupled to Fundamental Matter

    Full text link
    Motivated by developments in vectorlike holography, we study SU(N) Chern-Simons theory coupled to matter fields in the fundamental representation on various spatial manifolds. On the spatial torus T^2, we find light states at small `t Hooft coupling \lambda=N/k, where k is the Chern-Simons level, taken to be large. In the free scalar theory the gaps are of order \sqrt {\lambda}/N and in the critical scalar theory and the free fermion theory they are of order \lambda/N. The entropy of these states grows like N Log(k). We briefly consider spatial surfaces of higher genus. Based on results from pure Chern-Simons theory, it appears that there are light states with entropy that grows even faster, like N^2 Log(k). This is consistent with the log of the partition function on the three sphere S^3, which also behaves like N^2 Log(k). These light states require bulk dynamics beyond standard Vasiliev higher spin gravity to explain them.Comment: 58 pages, LaTeX, no figures, Minor error corrected, references added, The main results of the paper have not change

    Fermionic Coset, Critical Level W^(2)_4-Algebra and Higher Spins

    Full text link
    The fermionic coset is a limit of the pure spinor formulation of the AdS5xS5 sigma model as well as a limit of a nonlinear topological A-model, introduced by Berkovits. We study the latter, especially its symmetries, and map them to higher spin algebras. We show the following. The linear A-model possesses affine \AKMSA{pgl}{4}{4}_0 symmetry at critical level and its \AKMSA{psl}{4}{4}_0 current-current perturbation is the nonlinear model. We find that the perturbation preserves W4(2)\mathcal{W}^{(2)}_4-algebra symmetry at critical level. There is a topological algebra associated to \AKMSA{pgl}{4}{4}_0 with the properties that the perturbation is BRST-exact. Further, the BRST-cohomology contains world-sheet supersymmetric symplectic fermions and the non-trivial generators of the W4(2)\mathcal{W}^{(2)}_4-algebra. The Zhu functor maps the linear model to a higher spin theory. We analyze its \SLSA{psl}{4}{4} action and find finite dimensional short multiplets.Comment: 25 page

    Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields

    Full text link
    Conformal totally symmetric arbitrary spin bosonic fields in flat space-time of even dimension greater than or equal to four are studied. Second-derivative (ordinary-derivative) formulation for such fields is developed. We obtain gauge invariant Lagrangian and the corresponding gauge transformations. Gauge symmetries are realized by involving the Stueckelberg and auxiliary fields. Realization of global conformal boost symmetries on conformal gauge fields is obtained. Modified de Donder gauge condition and de Donder-Stueckelberg gauge condition are introduced. Using the de Donder-Stueckelberg gauge frame, equivalence of the ordinary-derivative and higher-derivative approaches is demonstrated. On-shell degrees of freedom of the arbitrary spin conformal field are analyzed. Ordinary-derivative light-cone gauge Lagrangian of conformal fields is also presented. Interrelations between the ordinary-derivative gauge invariant formulation of conformal fields and the gauge invariant formulation of massive fields are discussed.Comment: 51 pages, v2: Results and conclusions of v1 unchanged. In Sec.3, brief review of higher-derivative approaches added. In Sec.4, new representations for Lagrangian, modified de Donder gauge, and de Donder-Stueckelberg gauge added. In Sec.5, discussion of interrelations between the ordinary-derivative and higher-derivative approaches added. Appendices A,B,C,D and references adde

    de Sitter Supersymmetry Revisited

    Get PDF
    We present the basic N=1\mathcal{N} =1 superconformal field theories in four-dimensional de Sitter space-time, namely the non-abelian super Yang-Mills theory and the chiral multiplet theory with gauge interactions or cubic superpotential. These theories have eight supercharges and are invariant under the full SO(4,2)SO(4,2) group of conformal symmetries, which includes the de Sitter isometry group SO(4,1)SO(4,1) as a subgroup. The theories are ghost-free and the anti-commutator α{Qα,Qα}\sum_\alpha\{Q_\alpha, Q^{\alpha\dagger}\} is positive. SUSY Ward identities uniquely select the Bunch-Davies vacuum state. This vacuum state is invariant under superconformal transformations, despite the fact that de Sitter space has non-zero Hawking temperature. The N=1\mathcal{N}=1 theories are classically invariant under the SU(2,21)SU(2,2|1) superconformal group, but this symmetry is broken by radiative corrections. However, no such difficulty is expected in the N=4\mathcal{N}=4 theory, which is presented in appendix B.Comment: 21 pages, 2 figure

    F-Theorem without Supersymmetry

    Full text link
    The conjectured F-theorem for three-dimensional field theories states that the finite part of the free energy on S^3 decreases along RG trajectories and is stationary at the fixed points. In previous work various successful tests of this proposal were carried out for theories with {\cal N}=2 supersymmetry. In this paper we perform more general tests that do not rely on supersymmetry. We study perturbatively the RG flows produced by weakly relevant operators and show that the free energy decreases monotonically. We also consider large N field theories perturbed by relevant double trace operators, free massive field theories, and some Chern-Simons gauge theories. In all cases the free energy in the IR is smaller than in the UV, consistent with the F-theorem. We discuss other odd-dimensional Euclidean theories on S^d and provide evidence that (-1)^{(d-1)/2} \log |Z| decreases along RG flow; in the particular case d=1 this is the well-known g-theorem.Comment: 34 pages, 2 figures; v2 refs added, minor improvements; v3 refs added, improved section 4.3; v4 minor improvement
    corecore