11 research outputs found

    Generation of a homology model of the human histamine H₃ receptor for ligand docking and pharmacophore-based screening

    Get PDF
    The human histamine H₃ receptor (hH₃R) is a G-protein coupled receptor (GPCR), which modulates the release of various neurotransmitters in the central and peripheral nervous system and therefore is a potential target in the therapy of numerous diseases. Although ligands addressing this receptor are already known, the discovery of alternative lead structures represents an important goal in drug design. The goal of this work was to study the hH3R and its antagonists by means of molecular modelling tools. For this purpose, a strategy was pursued in which a homology model of the hH₃R based on the crystal structure of bovine rhodopsin was generated and refined by molecular dynamics simulations in a dipalmitoylphosphatidylcholine (DPPC)/water membrane mimic before the resulting binding pocket was used for high-throughput docking using the program GOLD. Alternatively, a pharmacophore-based procedure was carried out where the alleged bioactive conformations of three different potent hH₃R antagonists were used as templates for the generation of pharmacophore models. A pharmacophore-based screening was then carried out using the program Catalyst. Based upon a database of 418 validated hH₃R antagonists both strategies could be validated in respect of their performance. Seven hits obtained during this screening procedure were commercially purchased, and experimentally tested in a [³H]Nα-methylhistamine binding assay. The compounds tested showed affinities at hH₃R with Ki values ranging from 0.079 to 6.3 lM

    Biological Regulation of Bone Quality

    No full text
    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility

    New perspectives on osteogenesis imperfecta

    No full text

    Contact Allergy to Dental Materials and Implants

    No full text
    Dental professionals and dental patients are exposed to the same sensitizers, but the outcome is very different. Dental professionals suffer predominantly from irritant contact dermatitis and to a lesser degree from allergic contact dermatitis to acrylates and rubber products. Dental patients rarely have allergic contact stomatitis. In this chapter, the reader will learn about the multiple factors that lead to irritant contact dermatitis and also about the major sensitizers, e.g., methacrylates in dentin bonding agents, dental composite resins (DCR), and prostheses, in addition to rubber chemicals, metals, fragrances, and disinfectants. The various sensitizers that may give lichenoid reactions in patients are also discussed

    Osteogenesis imperfecta

    Get PDF
    Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation

    Peripheral and Central Mechanisms of Fatigue in Inflammatory and Noninflammatory Rheumatic Diseases

    No full text
    corecore