21 research outputs found

    GluRδ2 Expression in the Mature Cerebellum of Hotfoot Mice Promotes Parallel Fiber Synaptogenesis and Axonal Competition

    Get PDF
    Glutamate receptor delta 2 (GluRdelta2) is selectively expressed in the cerebellum, exclusively in the spines of the Purkinje cells (PCs) that are in contact with parallel fibers (PFs). Although its structure is similar to ionotropic glutamate receptors, it has no channel function and its ligand is unknown. The GluRdelta2-null mice, such as knockout and hotfoot have profoundly altered cerebellar circuitry, which causes ataxia and impaired motor learning. Notably, GluRdelta2 in PC-PF synapses regulates their maturation and strengthening and induces long term depression (LTD). In addition, GluRdelta2 participates in the highly territorial competition between the two excitatory inputs to the PC; the climbing fiber (CF), which innervates the proximal dendritic compartment, and the PF, which is connected to spiny distal branchlets. Recently, studies have suggested that GluRdelta2 acts as an adhesion molecule in PF synaptogenesis. Here, we provide in vivo and in vitro evidence that supports this hypothesis. Through lentiviral rescue in hotfoot mice, we noted a recovery of PC-PF contacts in the distal dendritic domain. In the proximal domain, we observed the formation of new spines that were innervated by PFs and a reduction in contact with the CF; ie, the pattern of innervation in the PC shifted to favor the PF input. Moreover, ectopic expression of GluRdelta2 in HEK293 cells that were cocultured with granule cells or in cerebellar Golgi cells in the mature brain induced the formation of new PF contacts. Collectively, our observations show that GluRdelta2 is an adhesion molecule that induces the formation of PF contacts independently of its cellular localization and promotes heterosynaptic competition in the PC proximal dendritic domain

    MicroRNA degradation by a conserved target RNA regulates animal behavior

    Get PDF
    International audiencemicroRNAs (miRNAs) repress target transcripts through partial complementarity. By contrast, highly complementary miRNA-binding sites within viral and artificially engineered transcripts induce miRNA degradation in vitro and in cell lines. Here, we show that a genome-encoded transcript harboring a near-perfect and deeply conserved miRNA-binding site for miR-29 controls zebrafish and mouse behavior. This transcript originated in basal vertebrates as a long noncoding RNA (lncRNA) and evolved to the protein-coding gene NREP in mammals, where the miR-29-binding site is located within the 3′ UTR. We show that the near-perfect miRNA site selectively triggers miR-29b destabilization through 3′ trimming and restricts its spatial expression in the cerebellum. Genetic disruption of the miR-29 site within mouse Nrep results in ectopic expression of cerebellar miR-29b and impaired coordination and motor learning. Thus, we demonstrate an endogenous target-RNA-directed miRNA degradation event and its requirement for animal behavio

    Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    Get PDF
    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion

    Improvement in symptoms and signs in the forefoot of patients with rheumatoid arthritis treated with anti-TNF therapy

    Get PDF
    Background: Inhibition of tumour necrosis factor (TNF) is an effective way of reducing synovitis and preventing joint damage in rheumatoid arthritis (RA), yet very little is known about its specific effect on foot pain and disability. The aim of this study was to evaluate whether anti-TNF therapy alters the presence of forefoot pathology and/or reduces foot pain and disability. Methods: Consecutive RA patients starting anti-TNF therapy (infliximab, etanercept, adalimumab) were assessed for presence of synovial hypertrophy and synovitis in the 2nd and 5th metatarso-phalangeal (MTP) joints and plantar forefoot bursal hypertrophy before and 12 weeks after therapy. Tender MTP joints and swollen bursae were established clinically by an experienced podiatrist and ultrasound (US) images were acquired and interpreted by a radiologist. Assessment of patient reported disease impact on the foot was performed using the Manchester Foot Pain and Disability Index (MFPDI). RResults: 31 patients (24 female, 7 male) with RA (12 seronegative, 19 seropositive) completed the study: mean age 59.6 (SD 10.1) years, disease duration 11.1 (SD 10.5) years, and previous number of Disease Modifying Anti Rheumatic Drugs 3.0 (1.6). Significant differences after therapy were found for Erythrocyte Sedimentation Rate (t=4.014, p&lt;0.001), C-reactive protein (t=3.889, p=0.001), 28 joint Disease Activity Score (t=3.712, p=.0.001), Visual Analog Scale (t=2.735, p=0.011) and Manchester Foot Pain and Disability Index (t=3.712, p=0.001). Presence of MTP joint synovial hypertrophy on US was noted in 67.5% of joints at baseline and 54.8% of joints at twelve weeks. Presence of plantar forefoot bursal hypertrophy on US was noted in 83.3% of feet at baseline and 75% at twelve weeks. Although there was a trend for reduction in observed presence of person specific forefoot pathology, when the frequencies were analysed (McNemar) this was not significant. Conclusions: Significant improvements were seen in patient reported foot pain and disability 12 weeks after commencing TNF inhibition in RA, but this may not be enough time to detect changes in forefoot pathology.<br/

    Current concepts in the diagnosis and management of extra-articular hip impingement syndromes

    No full text
    Purpose Extra-articular hip impingement syndromes encompass a group of conditions that have previously been an unrecognised source of pain in the hip and on occasion been associated with intra-articular hip impingement as well. As arthroscopic techniques for the hip continue to evolve, the importance of these conditions has been recognised recently and now form an important part of the differential of an individual presenting with hip pain. The aim of this article, therefore, is to provide the reader with an evidence-based and comprehensive update of these syndromes. Methods By reviewing past literature, the anatomy, pathophysiology, clinical features and the management of the five common extra-articular hip impingement syndromes were described. Results The common extra-articular impingement syndromes are: 1) Ischiofemoral impingement: quadratus femoris muscle becomes compressed between the lesser trochanter and the ischial tuberosity. 2) Subspine impingement: mechanical conflict occurs between an enlarged or malorientated anterior inferior iliac spine and the distal anterior femoral neck. 3) Iliopsoas impingement: mechanical conflict occurs between the iliopsoas muscle and the labrum, resulting in distinct anterior labral pathology. 4) Deep gluteal syndrome: pain occurs in the buttock due to the entrapment of the sciatic nerve in the deep gluteal space. 5) Pectineofoveal impingement: pain occurs when the medial synovial fold impinges against overlying soft tissue, primarily the zona orbicularis. Knowledge for these syndromes still remains limited for reasons mostly relating to their low prevalence and their co-existence with typical femoro-acetabular impingement. Conclusions The knowledge of extra-articular hip impingement syndromes is essential and should form a part of the differential diagnoses alongside intra-articular pathology including femoro-acetabular impingement particularly in the younger patient with a non-arthritic hip

    Functional gene screening in embryonic stem cell implicates Wnt antagonism in neural differentiation.

    Get PDF
    The multilineage differentiation capacity of mouse embryonic stem (ES) cells offers a potential testing platform for gene products that mediate mammalian lineage determination and cellular specialization. Identification of such differentiation regulators is crucial to harnessing ES cells for pharmaceutical discovery and cell therapy. Here we describe the use of episomal expression technology for functional evaluation of cDNA clones during ES-cell differentiation in vitro. Several candidate cDNAs identified by subtractive cloning and expression profiling were introduced into ES cells in episomal expression constructs. Subsequent differentiation revealed that the Wnt antagonist Sfrp2 stimulates production of neural progenitors. The significance of this observation was substantiated by forced expression of Wnt-1 and treatment with lithium chloride, both of which inhibit neural differentiation. These findings reveal the importance of Wnt signalling in regulating ES-cell lineage diversification. More generally, this study establishes a path for rapid and direct validation of candidate genes in ES cells

    Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    No full text
    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development
    corecore