18 research outputs found

    Cinnamomum cassia Bark in Two Herbal Formulas Increases Life Span in Caenorhabditis elegans via Insulin Signaling and Stress Response Pathways

    Get PDF
    Background: Proving the efficacy and corresponding mode of action of herbal supplements is a difficult challenge for evidence-based herbal therapy. A major hurdle is the complexity of herbal preparations, many of which combine multiple herbs, particularly when the combination is assumed to be vitally important to the effectiveness of the herbal therapy. This issue may be addressed through the use of contemporary methodology and validated animal models. Methods and Principal Findings: In this study, two commonly used traditional herbal formulas, Shi Quan Da Bu Tang (SQDB) and Huo Luo Xiao Ling Dan (HLXL) were evaluated using a survival assay and oxidative stress biomarkers in a well-established C. elegans model of aging. HLXL is an eleven herb formula modified from a top-selling traditional herbal formula for the treatment of arthritic joint pain. SQDB consists of ten herbs often used for fatigue and energy, particularly in the aged. We demonstrate here that SQDB significantly extend life span in a C. elegans model of aging. Among all individual herbs tested, two herbs Cinnamomum cassia bark (Chinese pharmaceutical name: Cinnamomi Cortex, CIN) and Panax ginseng root (Chinese pharmaceutical name: Ginseng Radix, GS) significantly extended life span in C. elegans. CIN in both SQDB and HLXL formula extended life span via modulation of multiple longevity assurance genes, including genes involved in insulin signaling and stress response pathways. All the life-span-extending herbs (SQDB, CIN and GS) also attenuated levels of H2O2 and enhanced small heat shock protein expression. Furthermore, the life spanextending herbs significantly delayed human amyloid beta (Aβ)-induced toxicity in transgenic C. elegans expressing human Aβ. Conclusion/Significance:These results validate an invertebrate model for rapid, systematic evaluation of commonly used Chinese herbal formulations and may provide insight for designing future evidence-based herbal therapy(s). Copyright: © 2010 Yu et al.published_or_final_versio

    Adenosquamous Carcinoma

    No full text

    Piceamycin and its N-acetylcysteine adduct is produced by Streptomyces sp GB 4-2

    No full text
    Piceamycin, a new macrolactam polyketide antibiotic, was detected by HPLC-diode array screening in extracts of Streptomyces sp. GB 4-2, which was isolated from the mycorrhizosphere of Norway spruce. The structure of piceamycin was determined by mass spectrometry and NMR experiments. It showed inhibitory activity against Gram-positive bacteria, selected human tumor cell lines and protein tyrosine phosphatase 1B. The Journal of Antibiotics (2009) 62, 513-518; doi:10.1038/ja.2009.64; published online 17 July 200

    Verrucosispora maris sp. nov., a novel deep-sea actinomycete isolated from a marine sediment which produces abyssomicins

    No full text
    Verrucosispora isolate AB-18-032T, the abyssomicin- and proximicin-producing actinomycete, has chemotaxonomic and morphological properties consistent with its classification in the genus Verrucosispora. The organism formed a distinct phyletic line in the Verrucosispora 16S rRNA gene tree sharing similarities of 99.7%, 98.7% and 98.9% with Verrucosispora gifhornensis DSM 44337T, Verrucosispora lutea YIM 013T and Verrucosispora sediminis MS 426T, respectively. It was readily distinguished from the two latter species using a range of phenotypic features and from V. gifhornensis DSM 44337T, its nearest phylogenetic neighbor, by a DNA G+C content of 65.5 mol% obtained by thermal denaturation and fluorometry and DNA:DNA relatedness values of 64.0% and 65.0% using renaturation and fluorometric methods, respectively. It is apparent from the combined genotypic and phenotypic data that strain AB-18-032T should be classified in the genus Verrucosispora as a new species. The name Verrucosispora maris sp. nov. is proposed for this taxon with isolate AB-18-032T (= DSM 45365T = NRRL B-24793T) as the type strain

    The Impacts of Climate and Social Changes on Cloudberry (Bakeapple) Picking: a Case Study from Southeastern Labrador

    No full text
    The traditional subsistence activities of Indigenous communities in Canada’s subarctic are being affected by the impacts of climate change, compounding the effects of social, economic and political changes. Most research has focused on hunting and fishing activities, overlooking berry picking as an important socio-cultural activity and contributor to the diversity of food systems. We examined the vulnerability of cloudberry (referred to as ‘bakeapple’ consistent with local terminology) picking to environmental changes in the community of Cartwright, Labrador using semi-structured interviews (n = 18), field surveys, and satellite imagery. We identified the components of vulnerability including: the environmental changes affecting the abundance, quality, and ripening time of bakeapples (i.e., exposure), the characteristics of the community that affect how these changes have local impacts (i.e., sensitivity), and the ways in which the community is responding to environmental changes (i.e., adaptive capacity). Our results confirm that environmental changes related to permafrost, vegetation, and water have occurred at the bakeapple picking grounds with observed impacts on bakeapples. It is becoming increasingly difficult for bakeapple pickers to respond to variable growth as in the past because of changes in summer settlement patterns that place families farther from their bakeapple patches. We conclude that harvesters in Cartwright have high adaptive capacity to respond to environmental changes due to their knowledge of their bakeapple patches, and at present, socioeconomic changes have had a greater impact than environmental changes on their harvesting capacity
    corecore