15 research outputs found

    Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype

    Get PDF
    Vectorial capacity is a measure of the transmission potential of a vector borne pathogen within a susceptible population. Vector competence, a component of the vectorial capacity equation, is the ability of an arthropod to transmit an infectious agent following exposure to that agent. Comparisons of arbovirus strain-specific vector competence estimates have been used to support observed or hypothesized differences in transmission capability. Typically, such comparisons are made at a single time point during the extrinsic incubation period, the time in days it takes for the virus to replicate and disseminate to the salivary glands. However, vectorial capacity includes crucial parameters needed to effectively evaluate transmission capability, though often this is based on the discrete vector competence values. Utilization of the rate of change of vector competence over a range of days gives a more accurate measurement of the transmission potential. Accordingly, we investigated the rate of change in vector competence of dengue virus in Aedes aegypti mosquitoes and the resulting vectorial capacity curves. The areas under the curves represent the effective vector competence and the cumulative transmission potentials of arboviruses within a population of mosquitoes. We used the calculated area under the curve for each virus strain and the corresponding variance estimates to test for differences in cumulative transmission potentials between strains of dengue virus based on our dynamic model. To further characterize differences between dengue strains, we devised a displacement index interpreted as the capability of a newly introduced strain to displace the established, dominant circulating strain. The displacement index can be used to better understand the transmission dynamics in systems where multiple strains/serotypes circulate or even multiple arbovirus species. The use of a rate of a rate of change based model of vectorial capacity and the informative calculations of the displacement index will lead to better measurements of the differences in transmission potential of arboviruses

    Myocarditis in CD8-Depleted SIV-Infected Rhesus Macaques after Short-Term Dual Therapy with Nucleoside and Nucleotide Reverse Transcriptase Inhibitors

    Get PDF
    Background: Although highly active antiretroviral therapy (HAART) has dramatically reduced the morbidity and mortality associated with HIV infection, a number of antiretroviral toxicities have been described, including myocardial toxicity resulting from the use of nucleotide and nucleoside reverse transcriptase inhibitors (NRTIs). Current treatment guidelines recommend the use of HAART regimens containing two NRTIs for initial therapy of HIV-1 positive individuals; however, potential cardiotoxicity resulting from treatment with multiple NRTIs has not been addressed. Methodology/Principal Findings: We examined myocardial tissue from twelve CD8 lymphocyte-depleted adult rhesus macaques, including eight animals infected with simian immunodeficiency virus, four of which received combined antiretroviral therapy (CART) consisting of two NRTIs [(9-R-2-Phosphonomethoxypropyl Adenine) (PMPA) and (+/−)-beta-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (RCV)] for 28 days. Multifocal infiltrates of mononuclear inflammatory cells were present in the myocardium of all macaques that received CART, but not untreated SIV-positive animals or SIV-negative controls. Macrophages were the predominant inflammatory cells within lesions, as shown by immunoreactivity for the macrophage markers Iba1 and CD68. Heart specimens from monkeys that received CART had significantly lower virus burdens than untreated animals (p<0.05), but significantly greater quantities of TNF-α mRNA than either SIV-positive untreated animals or uninfected controls (p<0.05). Interferon-γ (IFN-γ), IL-1β and CXCL11 mRNA were upregulated in heart tissue from SIV-positive monkeys, independent of antiretroviral treatment, but CXCL9 mRNA was only upregulated in heart tissue from macaques that received CART. Conclusions/Significance: These results suggest that short-term treatment with multiple NRTIs may be associated with myocarditis, and demonstrate that the CD8-depleted SIV-positive rhesus monkey is a useful model for studying the cardiotoxic effects of combined antiretroviral therapy in the setting of immunodeficiency virus infection

    Development of Real Time PCR to Study Experimental Mixed Infections of T. congolense Savannah and T. b. brucei in Glossina morsitans morsitans

    Get PDF
    Tsetse flies are able to acquire mixed infections naturally or experimentally either simultaneously or sequentially. Traditionally, natural infection rates in tsetse flies are estimated by microscopic examination of different parts of the fly after dissection, together with the isolation of the parasite in vivo. However, until the advent of molecular techniques it was difficult to speciate trypanosomes infections and to quantify trypanosome numbers within tsetse flies. Although more expensive, qPCR allows the quantification of DNA and is less time consuming due to real time visualization and validation of the results. The current study evaluated the application of qPCR to quantify the infection load of tsetse flies with T. b. brucei and T. congolense savannah and to study the possibility of competition between the two species. The results revealed that the two qPCR reactions are of acceptable efficiency (99.1% and 95.6%, respectively), sensitivity and specificity and can be used for quantification of infection load with trypanosomes in experimentally infected Glossina morsitans morsitans. The mixed infection of laboratory Glossina species and quantification of the infection suggests the possibility that a form of competition exists between the isolates of T. b. brucei and T. congolense savannah that we used when they co-exist in the fly midgut

    Review on the Molecular Tools for the Understanding of the Epidemiology of Animal Trypanosomosis in West Africa

    No full text
    The epidemiology of animal trypanosomosis around Bobo-Dioulasso (Burkina Faso, West Africa) benefited a lot in the last years from the progress of molecular tools. The two most used molecular techniques were the polymerase chain reaction for the diagnosis of the disease in cattle and the characterization of the trypanosomes in the host and the vector on one hand, and the microsatellite DNA polymorphism in tsetse flies to study the intraspecific genetic variability of the vector on the other hand. The results obtained in the Sideradougou area during a recent two year survey with these techniques, associated with many other georeferenced informations concerning vector and cattle distribution, natural environment, landuse, ground occupation, livestock management, were combined in a Geographical Information System. This new approach of a complex pathogenic system led to a better evaluation of the risk of trypanosome transmission

    Terapia gênica, doping genético e esporte: fundamentação e implicações para o futuro Gene therapy, genetic doping and sport: fundaments and implications for the future

    No full text
    A busca pelo desempenho ótimo tem sido uma constante no esporte de alto rendimento. Para tanto, muitos atletas acabam utilizando drogas e métodos ilícitos, os quais podem ter importantes efeitos adversos. A terapia gênica é uma modalidade terapêutica bastante recente na medicina, cujos resultados têm, até o momento, indicado sua eficácia no tratamento de diversas doenças graves. O princípio da terapia gênica consiste na transferência vetorial de materiais genéticos para células-alvo, com o objetivo de suprir os produtos de um gene estruturalmente anormal no genoma do paciente. Recentemente, o potencial para uso indevido da terapia gênica entre atletas tem despertado a atenção de cientistas e de órgãos reguladores de esporte. A transferência de genes que poderiam melhorar o desempenho esportivo por atletas saudáveis, método proibido em 2003, foi denominado de doping genético. Os genes candidatos mais importantes para doping genético são os que codificam para GH, IGF-1, bloqueadores da miostatina, VEGF, endorfinas e encefalinas, eritropoetina, leptina e PPAR-delta. Uma vez inserido no genoma do atleta, o gene se expressaria gerando um produto endógeno capaz de melhorar o desempenho atlético. Assim, os métodos atuais de detecção de doping não são sensíveis a esse tipo de manipulação, o que poderia estimular seu uso indevido entre atletas. Além disso, a terapia gênica ainda apresenta problemas conhecidos de aplicação, como resposta inflamatória e falta de controle da ativação do gene. Em pessoas saudáveis, é provável que tais problemas sejam ainda mais importantes, já que haveria excesso do produto do gene transferido. Há também outros riscos ainda não conhecidos, específicos para cada tipo de gene. Em vista disso, debates sobre o doping genético devem ser iniciados no meio acadêmico e esportivo, para que sejam estudadas medidas de prevenção, controle e detecção do doping genético, evitando assim futuros problemas de uso indevido dessa promissora modalidade terapêutica.<br>Optimal performance has been constantly sought for in high level competitive sport. To achieve this goal, many athletes use illicit drugs and methods, which could have important side effects. Gene therapy is a very recent therapeutic modality, whose results have shown to be efficient in the treatment of severe diseases so far. The basis of gene therapy is a vectorial transfer of genetic materials to target-cells in order to supply the products of an abnormal gene in the patient's genome. Recently, the potential for misuse of gene therapy among athletes has called attention of scientists and sports regulating organs. The transfer of genes that could improve athletic performance, a method prohibited by COI in 2003, was named gene doping. The most important candidate genes for gene doping are the ones which codify for the following proteins: GH, IGH-1, miostatin blockers, VEGF, endorfins and enkefalins, eritropoetin, leptin and PPAR-delta. Once inserted in the athlete genome, the gene would be expressed and produce an endogenous product capable of improving performance. Thus, current doping detection methods are not sensitive enough to detect gene doping, which in turn could stimulate its use among athletes. Moreover, gene therapy still presents known application problems, such as inflammatory response and lack of control of gene activation. It is probable that such problems would be even more important in healthy individuals, since there would be excessive product of the transferred gene. Moreover, other unknown risks specific for each gene are present. Therefore, debate on gene doping should be carried on in the academic as well as sports field, in order to study prevention, control and detection measures of gene doping, avoiding hence, future problems regarding the misuse of this promising therapy
    corecore