12 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Trends in scientific activity addressing transmissible spongiform encephalopathies: a bibliometric study covering the period 1973–2002

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to analyse the trends in scientific research on transmissible spongiform encephalopathies by applying bibliometric tools to the scientific literature published between 1973 and 2002.</p> <p>Methods</p> <p>The data for the study were obtained from Medline database, in order to determine the volume of scientific output in the above period, the countries involved, the type of document and the trends in the subject matters addressed. The period 1973–2002 was divided in three sub-periods.</p> <p>Results</p> <p>We observed a significant growth in scientific production. The percentage of increase is 871.7 from 1973 to 2002. This is more evident since 1991 and particularly in the 1996–2001 period. The countries found to have the highest output were the United States, the United Kingdom, Japan, France and Germany. The evolution in the subject matters was almost constant in the three sub-periods in which the study was divided. In the first and second sub-periods, the subject matters of greatest interest were more general, i.e Nervous system or Nervous system diseases, Creutzfeldt-Jakob disease, Scrapie, and Chemicals and Drugs, but in the last sub-period, some changes were observed because the Prion-related matters had the greatest presence.</p> <p>Collaboration among authors is small from 1973 to 1992, but increases notably in the third sub-period, and also the number of authors and clusters formed. Some of the authors, like Gajdusek or Prusiner, appear in the whole period.</p> <p>Conclusion</p> <p>The study reveals a very high increase in scientific production. It is related also with the beginnings of research on bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease, with the establishment of progressive collaboration relationships and a reflection of public health concerns about this problem.</p

    Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations:insights from an ecophysiological conceptual model of plant survival

    Get PDF
    Reduction in size and tissue nutrient concentration is widely considered to increase seedling drought resistance in dry and oligotrophic plantation sites. However, much evidence indicates that increase in size and tissue nutrient concentration improves seedling survival in Mediterranean forest plantations. This suggests that the ecophysiological processes and functional attributes relevant for early seedling survival in Mediterranean climate must be reconsidered. We propose a ecophysiological conceptual model for seedling survival in Mediterranean-climate plantations to provide a physiological explanation of the frequent positive relationship between outplanting performance and seedling size and nutrient concentration. The model considers the physiological processes outlined in the plantation establishment model of Burdett (Can J For Res 20:415-427, 1990), but incorporates other physiological processes that drive seedling survival, such as N remobilization, carbohydrate storage and plant hydraulics. The model considers that seedling survival in Mediterranean climates is linked to high growth capacity during the wet season. The model is for container plants and is based on three main principles, (1) Mediterranean climates are not dry the entire year but usually have two seasons of contrasting water availability; (2) summer drought is the main cause of seedling mortality; in this context, deep and large roots is a key trait for avoiding lethal water stress; (3) attainment of large root systems in the dry season is promoted when seedlings have high growth during the wet season. High growth is achieved when seedlings can divert large amount of resources to support new root and shoot growth. Functional traits that confer high photosynthesis, nutrient remobilization capacity, and non-structural carbohydrate storage promote high growth. Increases in seedling size and nutrient concentration strongly affect these physiological processes. Traits that confer high drought resistance are of low value during the wet season because hinder growth capacity. We provide specific evidence to support the model and finally we discuss its implications and the factors that may alter the frequent increase in performance with increase in seedling size and tissue nutrient concentration
    corecore