7 research outputs found

    Neue linguistische Methoden und arbeitstechnische Verfahren in der Erschliessung der ägyptischen Grammatik

    Get PDF
    15 páginas, 1 tabla, 6 figuras.Does diversity beget diversity? Diversity includes a diversity of concepts because it is linked to variability in and of life and can be applied to multiple levels. The connections between multiple levels of diversity are poorly understood. Here, we investigated the relationships between genetic, bacterial, and chemical diversity of the endangered Atlanto-Mediterranean sponge Spongia lamella. These levels of diversity are intrinsically related to sponge evolution and could have strong conservation implications. We used microsatellite markers, denaturing gel gradient electrophoresis and quantitative polymerase chain reaction, and high performance liquid chromatography to quantify genetic, bacterial, and chemical diversity of nine sponge populations. We then used correlations to test whether these diversity levels covaried. We found that sponge populations differed significantly in genetic, bacterial, and chemical diversity. We also found a strong geographic pattern of increasing genetic, bacterial, and chemical dissimilarity with increasing geographic distance between populations. However, we failed to detect significant correlations between the three levels of diversity investigated in our study. Our results suggest that diversity fails to beget diversity within a single species and indicates that a diversity of factors regulates a diversity of diversities, which highlights the complex nature of the mechanisms behind diversityResearch funded by grants from the Agence Nationale de la Recherche (ECIMAR), from the Spanish Ministry of Science and Technology SOLID (CTM2010-17755) and Benthomics (CTM2010-22218-C02-01) and the BIOCAPITAL project (MRTN-CT-2004-512301) of the European Union. This is a contribution of the Consolidated Research Group ‘‘Grupo de Ecologı´a Bento´nica,’’ SGR2009-655.Peer reviewe

    Diversity of Antibiotic-Active Bacteria Associated with the Brown Alga Laminaria saccharina from the Baltic Sea

    Get PDF
    Bacteria associated with the marine macroalga Laminaria saccharina, collected from the Kiel Fjord (Baltic Sea, Germany), were isolated and tested for antimicrobial activity. From a total of 210 isolates, 103 strains inhibited the growth of at least one microorganism from the test panel including Gram-negative and Gram-positive bacteria as well as a yeast. Most common profiles were the inhibition of Bacillus subtilis only (30%), B. subtilis and Staphylococcus lentus (25%), and B. subtilis, S. lentus, and Candida albicans (11%). In summary, the antibiotic-active isolates covered 15 different activity patterns suggesting various modes of action. On the basis of 16S rRNA gene sequence similarities >99%, 45 phylotypes were defined, which were classified into 21 genera belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Phylogenetic analysis of 16S rRNA gene sequences revealed that four isolates possibly represent novel species or even genera. In conclusion, L. saccharina represents a promising source for the isolation of new bacterial taxa and antimicrobially active bacteria

    Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea

    No full text
    In this study, the search for new antibiotics was combined with quantitative ecological studies. The cultured fraction of the associated bacterial communities from ten different Mediterranean sponge species was investigated. To obtain quantitative and qualitative data of sponge-associated bacterial communities and to expand the cultured diversity, different media were used. The largest morphological diversity and highest yield of isolates was obtained by using oligotrophic media, which consisted of natural habitat seawater amended with (1% additional carbon sources. The dominant bacterial morphotypes were determined and bacterial isolates were tested for antimicrobial activity and identified using 16S rDNA sequencing. The sponge-associated most abundant morphotypes were all affiliated to the Alphaproteobacteria and showed antimicrobial activity against at least one of the tested strains. In contrast, the ambient seawater was dominated by Gammaproteobacteria. One single alphaproteobacterium, which was related to Pseudovibrio denitrificans, was shown to dominate the cultured community of at least six of the sponges. This designated MBIC3368-like alphaproteobacterium has been isolated from sponges before and seems to be restricted to associations with members of the phylum Porifera. It displays a weak and unstable antimicrobial activity, which gets easily lost during cultivation. However, this bioactive bacterium was present in the sponges by up to 106 cells per gram wet-weight sponge tissue and dominated the cultured fraction with up to 74%. The association of this alphaproteobacterium with sponges is probably evolutionary young and facultative and possibly involves biologically active secondary metabolites. Besides a demonstrated vertical transfer, additional horizontal transfer between the sponges is assumed. Members of the genus Bacillus displaying antimicrobial activity were found regularly, too. However, actinomycetes, which are known for their production of bioactive substances, were present in very low abundance

    Status and Perspective of Sponge Chemosystematics

    No full text
    corecore