300 research outputs found

    Interstellar Turbulence II: Implications and Effects

    Full text link
    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spectrum and amplitude of fluctuations. The theory of diffraction and refraction is reviewed, as are the main observations and scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and Astrophysic

    LTBP2 null mutations in an autosomal recessive ocular syndrome with megalocornea, spherophakia, and secondary glaucoma

    Get PDF
    The latent TGFβ-binding proteins (LTBPs) and fibrillins are a superfamily of large, multidomain proteins with structural and TGFβ-signalling roles in the extracellular matrix. Their importance is underscored by fibrillin-1 mutations responsible for Marfan syndrome, but their respective roles are still incompletely understood. We report here on two families where children from healthy, consanguineous parents, presented with megalocornea and impaired vision associated with small, round, dislocated lenses (microspherophakia and ectopia lentis) and myopia, as well as a high-arched palate, and, in older children, tall stature with an abnormally large arm span over body height ratio, that is, associated features of Marfan syndrome. Glaucoma was not present at birth, but was diagnosed in older children. Whole genome homozygosity mapping followed by candidate gene analysis identified homozygous truncating mutations of LTBP2 gene in patients from both families. Fibroblast mRNA analysis was consistent with nonsense-mediated mRNA decay, with no evidence of mutated exon skipping. We conclude that biallelic null LTBP2 mutations cause the ocular phenotype in both families and could lead to Marfan-like features in older children. We suggest that intraocular pressures should be followed-up in young children with an ocular phenotype consisting of megalocornea, spherophakia and/or lens dislocation, and recommend LTBP2 gene analysis in these patients

    TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells <it>in vitro</it>.</p> <p>Methods</p> <p>RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells <it>in vitro </it>with MTT assays and matrigel transwell assay respectively.</p> <p>Results</p> <p>RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy.</p

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Involvement of toll-like receptor 9 polymorphism in cervical cancer development

    Get PDF
    The role played by the polymorphism located in Toll-like Receptor 9 (TLR9) as a risk factor of cervical cancer remains elusive. Therefore, we studied the association of the TLR9 −1486 T/C (rs187084) and C2848T (rs352140) polymorphisms with cervical cancer. The TLR9 −1486 T/C and C2848T polymorphism was genotyped in 426 patients and 460 unrelated healthy females from the Polish population. Logistic regression analysis adjusting for age, pregnancy, oral contraceptive use, tobacco smoking, and menopausal status showed that both the TLR9 −1486 T/C and C2848T polymorphisms could be a genetic risk factor for cervical cancer. For the TLR9 −1486 T/C polymorphism, the adjusted OR for patients with the C/T genotype versus T/T genotype was 1.371 (95 % CI 1.021–1.842, p = 0.0361), the adjusted OR for the C/C genotype vs the T/T genotype was 1.300 (95 % CI 1.016–1.507, p = 0.0096), and the adjusted OR for the C/T or C/C genotype vs the T/T genotype was 1.448 (95 % CI 1.099–1.908, p = 0.0083). For the C2848T polymorphism, the adjusted OR for patients with the C/T genotype vs C/C genotype was 1.443 (95 % CI 1.019–2.043, p = 0.0380), the adjusted OR for the T/T genotype vs the C/C genotype was 1.237 (95 % CI 1.016–1.507, p = 0.0328), and the adjusted OR for the T/C or T/T genotype vs the C/C genotype was 1.345 (95 % CI 0.976–1.855, p = 0.0700). Our studies suggest that the TLR9 −1486 T/C and C2848T polymorphisms may be a genetic risk factor for cervical cancer

    Bisbibenzyls, a New Type of Antifungal Agent, Inhibit Morphogenesis Switch and Biofilm Formation through Upregulation of DPP3 in Candida albicans

    Get PDF
    The yeast-to-hypha transition plays a crucial role in the pathogenesis of C. albicans. Farnesol, a quorum sensing molecule (QSM) secreted by the fungal itself, could prevent the formation of hyphae and subsequently lead to the defect of biofilm formation. The DPP3, encoding phosphatase, is a key gene in regulating farnesol synthesis. In this study, we screened 24 bisbibenzyls and 2 bibenzyls that were isolated from bryophytes or chemically synthesized by using CLSI method for antifungal effect. Seven bisbibenzyls were found to have antifungal effects with IC80 less than 32 µg/ml, and among them, plagiochin F, isoriccardin C and BS-34 were found to inhibit the hyphae and biofilm formation of C. albicans in a dose-dependent manner. To uncover the underlying relationship between morphogenesis switch and QSM formation, we measured the farnesol production by HPLC-MS and quantified Dpp3 expression by detecting the fluorescent intensity of green fluorescent protein tagged strain using Confocal Laser Scanning microscopy and Multifunction Microplate Reader. The DPP3 transcripts were determined by real-time PCR. The data indicated that the bisbibenzyls exerted antifungal effects through stimulating the synthesis of farnesol via upregulation of Dpp3, suggesting a potential antifungal application of bisbibenzyls. In addition, our assay provides a novel, visual and convenient method to measure active compounds against morphogenesis switch

    Impact of HIV on Cell Survival and Antiviral Activity of Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are important mediators of innate immunity that act mainly through secretion of interferon (IFN)-α. Previous studies have found that these cells can suppress HIV in vitro; additionally, pDCs have been shown to be severely reduced in the peripheral blood of HIV-infected individuals. In the present study, we sought to determine the ability of pDCs to directly suppress viral replication ex vivo and to delineate the potential mechanisms whereby pDCs are depleted in HIV-infected individuals. We demonstrate that activated pDCs strongly suppress HIV replication in autologous CD4(+) T cells via a mechanism involving IFN-α as well as other antiviral factors. Of note, unstimulated pDCs from infected individuals who maintain low levels of plasma viremia without antiretroviral therapy were able to suppress HIV ex vivo via a mechanism requiring cell-to-cell contact. Our data also demonstrate that death of pDCs by both apoptosis and necrosis is induced by fusion of HIV with pDCs. Taken together, our data suggest that pDCs play an important role in the control of HIV replication and that high levels of viral replication in vivo are associated with pDC cell death via apoptosis and necrosis. Elucidation of the mechanism by which pDCs suppress HIV replication in vivo may have clinically relevant implications for future therapeutic strategies

    IQGAP1 Interacts with Components of the Slit Diaphragm Complex in Podocytes and Is Involved in Podocyte Migration and Permeability In Vitro

    Get PDF
    IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties

    Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses

    Get PDF
    Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes

    <i>Trypanosoma brucei</i> DHRF-TS revisited:characterisation of a bifunctional and highly unstable recombinant dihydrofolate reductase-thymidylate synthase

    Get PDF
    <div><p>Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA<sup>-</sup> <i>Escherichia coli</i>, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (<i>K</i><sub>i</sub> 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (<i>K</i><sub>i</sub> 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.</p></div
    corecore