414 research outputs found

    Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species

    Get PDF
    The phytohormone abscisic acid (ABA) and reactive oxygen species (ROS) play critical roles in mediating abiotic stress responses in plants. It is well known that ABA is involved in the modulation of ROS levels by regulating ROS-producing and ROS-scavenging genes, but the molecular mechanisms underlying this regulation are poorly understood. Here we show that the expression of maize ABP9 gene, which encodes a bZIP transcription factor capable of binding to the ABRE2 motif in the maize Cat1 promoter, is induced by ABA, H2O2, drought and salt. Constitutive expression of ABP9 in transgenic Arabidopsis leads to remarkably enhanced tolerance to multiple stresses including drought, high salt, freezing temperature and oxidative stresses. ABP9 expressing Arabidopsis plants also exhibit increased sensitivity to exogenously applied ABA during seed germination, root growth and stomatal closure and improved water-conserving capacity. Moreover, constitutive expression of ABP9 causes reduced cellular levels of ROS, alleviated oxidative damage and reduced cell death, accompanied by elevated expression of many stress/ABA responsive genes including those for scavenging and regulating ROS. Taken together, these results suggest that ABP9 may play a pivotal role in plant tolerance to abiotic stresses by fine tuning ABA signaling and control of ROS accumulation

    On the sources of the height–intelligence correlation: New insights from a bivariate ACE model with assortative mating

    Get PDF
    A robust positive correlation between height and intelligence, as measured by IQ tests, has been established in the literature. This paper makes several contributions toward establishing the causes of this association. First, we extend the standard bivariate ACE model to account for assortative mating. The more general theoretical framework provides several key insights, including formulas to decompose a cross-trait genetic correlation into components attributable to assortative mating and pleiotropy and to decompose a cross-trait within-family correlation. Second, we use a large dataset of male twins drawn from Swedish conscription records and examine how well genetic and environmental factors explain the association between (i) height and intelligence and (ii) height and military aptitude, a professional psychogologist’s assessment of a conscript’s ability to deal with wartime stress. For both traits, we find suggestive evidence of a shared genetic architecture with height, but we demonstrate that point estimates are very sensitive to assumed degrees of assortative mating. Third, we report a significant within-family correlation between height and intelligence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(ρ^=0.10),(\hat{\rho}=0.10),\end{document} suggesting that pleiotropy might be at play

    Rapid Enzymatic Response to Compensate UV Radiation in Copepods

    Get PDF
    Ultraviolet radiation (UVR) causes physical damage to DNA, carboxylation of proteins and peroxidation of lipids in copepod crustaceans, ubiquitous and abundant secondary producers in most aquatic ecosystems. Copepod adaptations for long duration exposures include changes in behaviour, changes in pigmentation and ultimately changes in morphology. Adaptations to short-term exposures are little studied. Here we show that short-duration exposure to UVR causes the freshwater calanoid copepod, Eudiaptomus gracilis, to rapidly activate production of enzymes that prevent widespread collateral peroxidation (glutathione S-transferase, GST), that regulate apoptosis cell death (Caspase-3, Casp-3), and that facilitate neurotransmissions (cholinesterase-ChE). None of these enzyme systems is alone sufficient, but they act in concert to reduce the stress level of the organism. The interplay among enzymatic responses provides useful information on how organisms respond to environmental stressors acting on short time scales

    La educación inclusiva frente a las desigualdades sociales: un estado de la cuestion y algunas reflexiones geograficas

    Get PDF
    Este artículo establece un estado de la cuestión e la educación inclusiva en el mundo y sugiere algunas reflexiones al respecto. El primer apartado recuerda las conexiones ineludibles entre las preocupaciones educativas por la educación inclusiva y las preocupaciones más generales por la desigualdad. El segundo consigna los criterios de búsqueda de las publicaciones académicas, y observa dos grandes temas en sus contenidos: sobre todo, el cambio interno de las escuelas atrae las miradas, pero en segundo plano también el entorno territorial despierta algunas inquietudes. El tercero anota los criterios de búsqueda de la documentación del Banco Mundial, la OCDE y la UNESCO. En este ámbito los simposios de la Oficina Internacional de la Educación de UNESCO revelan una interpretación dispar, aunque convergente, del concepto de educación inclusiva en las distintas regiones mundiales. Asimismo, todas las publicaciones oficiales muestran una atención prioritaria a las dinámicas internas de las escuelas, puesto que apenas algunas esbozan ciertas relaciones entre la educación inclusiva y las políticas públicas. El último apartado adelanta varios argumentos a favor de una mayor consideración de las escalas local y estatal de la educación inclusiva. Las principales razones para atender a la dimensión local provienen de la causalidad acumulativa de las privaciones sociales, de la necesidad de articular la acción de las escuelas y de la posibilidad de abrir un espacio significativo para la participación ciudadana. Asimismo, las principales razones para atender a la dimensión estatal surgen de las posibles sinergias entre la educación inclusiva y la expansión educativa (p. ej. ¿es correlativo el avance de la escolarización en los distintos ciclos escolares?) como también entre la educación inclusiva y la protección social (p. ej. ¿tienen una implicación pedagógica consistente las abundantes condiciones educativas de las transferencias sociales?

    Evidence for Limited Genetic Compartmentalization of HIV-1 between Lung and Blood

    Get PDF
    BACKGROUND:HIV-1 is frequently detected in the lungs of infected individuals and is likely important in the development of pulmonary opportunistic infections. The unique environment of the lung, rich in alveolar macrophages and with specialized local immune responses, may contribute to differential evolution or selection of HIV-1. METHODOLOGY AND FINDINGS:We characterized HIV-1 in the lung in relation to contemporaneous viral populations in the blood. The C2-V5 region of HIV-1 env was sequenced from paired lung (induced sputum or bronchoalveolar lavage) and blood (plasma RNA and proviral DNA from sorted or unsorted PBMC) from 18 subjects. Compartmentalization between tissue pairs was assessed using 5 established tree or distance-based methods, including permutation tests to determine statistical significance. We found statistical evidence of compartmentalization between lung and blood in 10/18 subjects, although lung and blood sequences were intermingled on phylogenetic trees in all subjects. The subject showing the greatest compartmentalization contained many nearly identical sequences in BAL sample, suggesting clonal expansion may contribute to reduced viral diversity in the lung in some cases. However, HIV-1 sequences in lung were not more homogeneous overall, nor were we able to find a lung-specific genotype associated with macrophage tropism in V3. In all four subjects in whom predicted X4 genotypes were found in blood, predicted X4 genotypes were also found in lung. CONCLUSIONS:Our results support a picture of continuous migration of HIV-1 between circulating blood and lung tissue, with perhaps a very limited degree of localized evolution or clonal replication

    Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.)

    Full text link
    [EN] Nerium oleander is an ornamental species of high aesthetic value, grown in arid and semi- arid regions because of its drought tolerance, which is also considered as relatively resistant to salt; yet the biochemical and molecular mechanisms underlying oleander¿s stress toler- ance remain largely unknown. To investigate these mechanisms, one-year-old oleander seedlings were exposed to 15 and 30 days of treatment with increasing salt concentratio ns, up to 800 mM NaCl, and to complete withholding of irrigation; growth parameters and bio- chemical markers characteristic of conserved stress-response pathways were then deter- mined in stressed and control plants. Strong water deficit and salt stress both caused inhibition of growth, degradation of photosynthetic pigments, a slight (but statistically signifi- cant) increase in the leaf levels of specific osmolytes, and induction of oxidative stress¿as indicated by the accumulation of malondialdehyde (MDA), a reliable oxidative stress marker ¿accompanied by increases in the levels of total phenolic compounds and antioxidant fla- vonoids and in the specific activities of ascorbate peroxidase (APX) and glutathione reduc- tase (GR). High salinity, in addition, induced accumulation of Na + and Cl - in roots and leaves and the activation of superoxide dismutase (SOD) and catalase (CAT) activities. Apart from anatomical adaptations that protect oleander from leaf dehydration at moderate levels of stress, our results indicate that tolerance of this species to salinity and water deficit is based on the constitutive accumulation in leaves of high concentratio ns of soluble carbohydrates and, to a lesser extent, of glycine betaine, and in the activation of the aforementioned antiox- idant systems. Moreover, regarding specifically salt stress, mechanisms efficiently blocking transport of toxic ions from the roots to the aerial parts of the plant appear to contribute to a large extent to tolerance in Nerium oleanderThis work was financed by internal funds of the Polytechnic University of Valencia to Monica Boscaiu and Oscar Vicente. Dinesh Kumar’s stay in Valencia was financed by a NAMASTE fellowship from the European Union, and Mohamad Al Hassan was a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium).Kumar, D.; Al Hassan, M.; Naranjo Olivero, MA.; Agrawal, V.; Boscaiu, M.; Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE. 12(9). doi:10.1371/journal.pone.0185017Se018501712
    corecore