25 research outputs found

    Comparing methods to estimate treatment effects on a continuous outcome in multicentre randomized controlled trials: A simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multicentre randomized controlled trials (RCTs) routinely use randomization and analysis stratified by centre to control for differences between centres and to improve precision. No consensus has been reached on how to best analyze correlated continuous outcomes in such settings. Our objective was to investigate the properties of commonly used statistical models at various levels of clustering in the context of multicentre RCTs.</p> <p>Methods</p> <p>Assuming no treatment by centre interaction, we compared six methods (ignoring centre effects, including centres as fixed effects, including centres as random effects, generalized estimating equation (GEE), and fixed- and random-effects centre-level analysis) to analyze continuous outcomes in multicentre RCTs using simulations over a wide spectrum of intraclass correlation (ICC) values, and varying numbers of centres and centre size. The performance of models was evaluated in terms of bias, precision, mean squared error of the point estimator of treatment effect, empirical coverage of the 95% confidence interval, and statistical power of the procedure.</p> <p>Results</p> <p>While all methods yielded unbiased estimates of treatment effect, ignoring centres led to inflation of standard error and loss of statistical power when within centre correlation was present. Mixed-effects model was most efficient and attained nominal coverage of 95% and 90% power in almost all scenarios. Fixed-effects model was less precise when the number of centres was large and treatment allocation was subject to chance imbalance within centre. GEE approach underestimated standard error of the treatment effect when the number of centres was small. The two centre-level models led to more variable point estimates and relatively low interval coverage or statistical power depending on whether or not heterogeneity of treatment contrasts was considered in the analysis.</p> <p>Conclusions</p> <p>All six models produced unbiased estimates of treatment effect in the context of multicentre trials. Adjusting for centre as a random intercept led to the most efficient treatment effect estimation across all simulations under the normality assumption, when there was no treatment by centre interaction.</p

    Revisiting the pH-gated conformational switch on the activities of HisKA-family histidine kinases

    Get PDF
    Histidine is a versatile residue playing key roles in enzyme catalysis thanks to the chemistry of its imidazole group that can serve as nucleophile, general acid or base depending on its protonation state. In bacteria, signal transduction relies on two-component systems (TCS) which comprise a sensor histidine kinase (HK) containing a phosphorylatable catalytic His with phosphotransfer and phosphatase activities over an effector response regulator. Recently, a pH-gated model has been postulated to regulate the phosphatase activity of HisKA HKs based on the pH-dependent rotamer switch of the phosphorylatable His. Here, we have revisited this model from a structural and functional perspective on HK853-RR468 and EnvZ-OmpR TCS, the prototypical HisKA HKs. We have found that the rotamer of His is not influenced by the environmental pH, ruling out a pH-gated model and confirming that the chemistry of the His is responsible for the decrease in the phosphatase activity at acidic pH

    Comparison of population-averaged and cluster-specific models for the analysis of cluster randomized trials with missing binary outcomes: a simulation study

    Get PDF
    <p>Abstracts</p> <p>Background</p> <p>The objective of this simulation study is to compare the accuracy and efficiency of population-averaged (i.e. generalized estimating equations (GEE)) and cluster-specific (i.e. random-effects logistic regression (RELR)) models for analyzing data from cluster randomized trials (CRTs) with missing binary responses.</p> <p>Methods</p> <p>In this simulation study, clustered responses were generated from a beta-binomial distribution. The number of clusters per trial arm, the number of subjects per cluster, intra-cluster correlation coefficient, and the percentage of missing data were allowed to vary. Under the assumption of covariate dependent missingness, missing outcomes were handled by complete case analysis, standard multiple imputation (MI) and within-cluster MI strategies. Data were analyzed using GEE and RELR. Performance of the methods was assessed using standardized bias, empirical standard error, root mean squared error (RMSE), and coverage probability.</p> <p>Results</p> <p>GEE performs well on all four measures — provided the downward bias of the standard error (when the number of clusters per arm is small) is adjusted appropriately — under the following scenarios: complete case analysis for CRTs with a small amount of missing data; standard MI for CRTs with variance inflation factor (VIF) <3; within-cluster MI for CRTs with VIF≥3 and cluster size>50. RELR performs well only when a small amount of data was missing, and complete case analysis was applied.</p> <p>Conclusion</p> <p>GEE performs well as long as appropriate missing data strategies are adopted based on the design of CRTs and the percentage of missing data. In contrast, RELR does not perform well when either standard or within-cluster MI strategy is applied prior to the analysis.</p
    corecore