671 research outputs found
Oud word je niet alleen. Een enquête over eenzaamheid en sociaal isolement bij ouderen in België
Koning Boudewinjstichtin
Electroluminescence and the measurement of temperature during Stage III of flash sintering experiments
The optical glow of ceramics that becomes established during the constant state of flash, known as Stage III in flash sintering experiments, is investigated. The specimen temperature in this state is obtained from in situ experiments at the Pohang Light Source II. The measurements of the specimen temperature agree very well with the predictions from the black body radiation model. The optical emission spectrum from the specimen is measured from the visible into the deep infrared, and compared with black body radiation that would have been expected from Joule heating. It is concluded that the specimens radiate by electroluminescence, which is ascribed to electron hole recombination of excitons. The phenomenon is likely the same as discovered by Nernst at the turn of the twentieth century. (C) 2015 Elsevier Ltd. All rights reserved.114636Ysciescopu
Gravity duals of supersymmetric gauge theories on three-manifolds
We study gravity duals to a broad class of N=2 supersymmetric gauge theories
defined on a general class of three-manifold geometries. The gravity
backgrounds are based on Euclidean self-dual solutions to four-dimensional
gauged supergravity. As well as constructing new examples, we prove in general
that for solutions defined on the four-ball the gravitational free energy
depends only on the supersymmetric Killing vector, finding a simple closed
formula when the solution has U(1) x U(1) symmetry. Our result agrees with the
large N limit of the free energy of the dual gauge theory, computed using
localization. This constitutes an exact check of the gauge/gravity
correspondence for a very broad class of gauge theories with a large N limit,
defined on a general class of background three-manifold geometries.Comment: 74 pages, 2 figures; v2: minor change
S-duality in Twistor Space
In type IIB string compactifications on a Calabi-Yau threefold, the
hypermultiplet moduli space must carry an isometric action of the modular
group SL(2,Z), inherited from the S-duality symmetry of type IIB string theory
in ten dimensions. We investigate how this modular symmetry is realized at the
level of the twistor space of , and construct a general class of
SL(2,Z)-invariant quaternion-Kahler metrics with two commuting isometries,
parametrized by a suitably covariant family of holomorphic transition
functions. This family should include corrected by D3-D1-D(-1)-instantons
(with fivebrane corrections ignored) and, after taking a suitable rigid limit,
the Coulomb branch of five-dimensional N=2 gauge theories compactified on a
torus, including monopole string instantons. These results allow us to
considerably simplify the derivation of the mirror map between type IIA and IIB
fields in the sector where only D1-D(-1)-instantons are retained.Comment: 29 pages, 1 figur
D3-instantons, Mock Theta Series and Twistors
The D-instanton corrected hypermultiplet moduli space of type II string
theory compactified on a Calabi-Yau threefold is known in the type IIA picture
to be determined in terms of the generalized Donaldson-Thomas invariants,
through a twistorial construction. At the same time, in the mirror type IIB
picture, and in the limit where only D3-D1-D(-1)-instanton corrections are
retained, it should carry an isometric action of the S-duality group SL(2,Z).
We prove that this is the case in the one-instanton approximation, by
constructing a holomorphic action of SL(2,Z) on the linearized twistor space.
Using the modular invariance of the D4-D2-D0 black hole partition function, we
show that the standard Darboux coordinates in twistor space have modular
anomalies controlled by period integrals of a Siegel-Narain theta series, which
can be canceled by a contact transformation generated by a holomorphic mock
theta series.Comment: 42 pages; discussion of isometries is amended; misprints correcte
A new family of periplasmic-binding proteins that sense arsenic oxyanions
Arsenic contamination of drinking water affects more than 140 million people worldwide. While toxic to humans, inorganic forms of arsenic (arsenite and arsenate), can be used as energy sources for microbial respiration. AioX and its orthologues (ArxX and ArrX) represent the first members of a new sub-family of periplasmic-binding proteins that serve as the first component of a signal transduction system, that's role is to positively regulate expression of arsenic metabolism enzymes. As determined by X-ray crystallography for AioX, arsenite binding only requires subtle conformational changes in protein structure, providing insights into protein-ligand interactions. The binding pocket of all orthologues is conserved but this alone is not sufficient for oxyanion selectivity, with proteins selectively binding either arsenite or arsenate. Phylogenetic evidence, clearly demonstrates that the regulatory proteins evolved together early in prokaryotic evolution and had a separate origin from the metabolic enzymes whose expression they regulate
Scattering Amplitudes and BCFW Recursion in Twistor Space
Twistor ideas have led to a number of recent advances in our understanding of
scattering amplitudes. Much of this work has been indirect, determining the
twistor space support of scattering amplitudes by examining the amplitudes in
momentum space. In this paper, we construct the actual twistor scattering
amplitudes themselves. We show that the recursion relations of Britto, Cachazo,
Feng and Witten have a natural twistor formulation that, together with the
three-point seed amplitudes, allows us to recursively construct general tree
amplitudes in twistor space. We obtain explicit formulae for -particle MHV
and NMHV super-amplitudes, their CPT conjugates (whose representations are
distinct in our chiral framework), and the eight particle N^2MHV
super-amplitude. We also give simple closed form formulae for the N=8
supergravity recursion and the MHV and conjugate MHV amplitudes. This gives a
formulation of scattering amplitudes in maximally supersymmetric theories in
which superconformal symmetry and its breaking is manifest. For N^kMHV, the
amplitudes are given by 2n-4 integrals in the form of Hilbert transforms of a
product of purely geometric, superconformally invariant twistor delta
functions, dressed by certain sign operators. These sign operators subtly
violate conformal invariance, even for tree-level amplitudes in N=4 super
Yang-Mills, and we trace their origin to a topological property of split
signature space-time. We develop the twistor transform to relate our work to
the ambidextrous twistor diagram approach of Hodges and of Arkani-Hamed,
Cachazo, Cheung and Kaplan.Comment: v2: minor corrections + extra refs. v3: further minor corrections,
extra discussion of signature issues + more ref
Recommended from our members
Demonstration of the event identification capabilities of the NEXT-White detector
In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat± 0.3 sys% for a background acceptance of 20.6 ± 0.4 stat± 0.3 sys% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies. [Figure not available: see fulltext.
Recommended from our members
Radiogenic backgrounds in the NEXT double beta decay experiment
Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterráneo de Canfranc with xenon depleted in 136Xe are analyzed to derive a total background rate of (0.84±0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of 60Co, 40K, 214Bi and 208Tl to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25±0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5σ after 1 year of data taking. The background measurement in a Qββ±100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75±0.12) events. [Figure not available: see fulltext.]
Identification of a New Rhoptry Neck Complex RON9/RON10 in the Apicomplexa Parasite Toxoplasma gondii
Apicomplexan parasites secrete and inject into the host cell the content of specialized secretory organelles called rhoptries, which take part into critical processes such as host cell invasion and modulation of the host cell immune response. The rhoptries are structurally and functionally divided into two compartments. The apical duct contains rhoptry neck (RON) proteins that are conserved in Apicomplexa and are involved in formation of the moving junction (MJ) driving parasite invasion. The posterior bulb contains rhoptry proteins (ROPs) unique to an individual genus and, once injected in the host cell act as effector proteins to co-opt host processes and modulate parasite growth and virulence. We describe here two new RON proteins of Toxoplasma gondii, RON9 and RON10, which form a high molecular mass complex. In contrast to the other RONs described to date, this complex was not detected at the MJ during invasion and therefore was not associated to the MJ complex RON2/4/5/8. Disruptions of either RON9 or RON10 gene leads to the retention of the partner in the ER followed by subsequent degradation, suggesting that the RON9/RON10 complex formation is required for proper sorting to the rhoptries. Finally, we show that the absence of RON9/RON10 has no significant impact on the morphology of rhoptry, on the invasion and growth in fibroblasts in vitro or on virulence in vivo. The conservation of RON9 and RON10 in Coccidia and Cryptosporidia suggests a specific relation with development in intestinal epithelial cells
- …