33 research outputs found

    Hepatitis B virus genotypes and evolutionary profiles from blood donors from the northwest region of China

    Get PDF
    Hepatitis B virus (HBV) is prevalent in China and screening of blood donors is mandatory. Up to now, ELISA has been universally used by the China blood bank. However, this strategy has sometimes failed due to the high frequency of nucleoside acid mutations. Understanding HBV evolution and strain diversity could help devise a better screening system for blood donors. However, this kind of information in China, especially in the northwest region, is lacking. In the present study, serological markers and the HBV DNA load of 11 samples from blood donor candidates from northwest China were determined. The HBV strains were most clustered into B and C genotypes and could not be clustered into similar types from reference sequences. Subsequent testing showed liver function impairment and increasing virus load in the positive donors. This HBV evolutionary data for China will allow for better ELISA and NAT screening efficiency in the blood bank of China, especially in the northwest region

    Trends in prevalence of hepatitis B virus infection among Albanian blood donors, 1999-2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis B virus (HBV) was among the first virus known to be transmitted by blood and blood productions. The objective of this study is to determine the trend of hepatitis B virus in blood donors.</p> <p>Materials and methods</p> <p>In this study 79274 blood donors were retrospectively evaluated for HBsAg. The donors were selected using personal questionnaire, physical examination and testing blood before donation. Blood banks records are used as source of information. The blood donors samples were analyzed for the presence of hepatitis B surface antigen (HBsAg) by commercial available kits ELISA method, third generation (from Abbott laboratory, Germany). A sample was considered as HBsAg positive when found twice repeatedly reactive. Reactive samples were not confirmed with addition tests.</p> <p>Results</p> <p>In the evaluation data, we found out that from 79274 of the total healthy blood donors, 15983 were voluntary donors, 52876 were family replacement donors and 10424 commercial blood donors. The prevalence of HBsAg in blood donors was 7.9%. It was increased steadily from 5.9% in 1999 to 9.1% in 2006 and decreased in 7.9% in 2009. According to blood donors status the HBsAg prevalence was 10.5% in commercial blood donors, 8.1% in voluntary donors and 8.6% in family replacement donors. The prevalence of anti-HBc in blood donors was 59.1%.</p> <p>Conclusion</p> <p>The prevalence of HBsAg was lower in voluntary non remunerate blood donors than commercial donors and family replacement blood donors. In FDs the prevalence was higher than VDs but lower than CDs. So, it is important to encourage the voluntary blood donors to become regularly blood donors.</p

    Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface

    Get PDF
    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein

    Transfusion-transmitted infections

    Get PDF
    Although the risk of transfusion-transmitted infections today is lower than ever, the supply of safe blood products remains subject to contamination with known and yet to be identified human pathogens. Only continuous improvement and implementation of donor selection, sensitive screening tests and effective inactivation procedures can ensure the elimination, or at least reduction, of the risk of acquiring transfusion transmitted infections. In addition, ongoing education and up-to-date information regarding infectious agents that are potentially transmitted via blood components is necessary to promote the reporting of adverse events, an important component of transfusion transmitted disease surveillance. Thus, the collaboration of all parties involved in transfusion medicine, including national haemovigilance systems, is crucial for protecting a secure blood product supply from known and emerging blood-borne pathogens

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303
    corecore