191 research outputs found

    Development and internal validation of prognostic models to predict negative health outcomes in older patients with multimorbidity and polypharmacy in general practice

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordBackground Polypharmacy interventions are resource-intensive and should be targeted to those at risk of negative health outcomes. Our aim was to develop and internally validate prognostic models to predict health-related quality of life (HRQoL) and the combined outcome of falls, hospitalisation, institutionalisation and nursing care needs, in older patients with multimorbidity and polypharmacy in general practices. Methods Design: two independent data sets, one comprising health insurance claims data (n=592 456), the other data from the PRIoritising MUltimedication in Multimorbidity (PRIMUM) cluster randomised controlled trial (n=502). Population: ā‰„60 years, ā‰„5 drugs, ā‰„3 chronic diseases, excluding dementia. Outcomes: combined outcome of falls, hospitalisation, institutionalisation and nursing care needs (after 6, 9 and 24 months) (claims data); and HRQoL (after 6 and 9 months) (trial data). Predictor variables in both data sets: age, sex, morbidity-related variables (disease count), medication-related variables (European Union-Potentially Inappropriate Medication list (EU-PIM list)) and health service utilisation. Predictor variables exclusively in trial data: additional socio-demographics, morbidity-related variables (Cumulative Illness Rating Scale, depression), Medication Appropriateness Index (MAI), lifestyle, functional status and HRQoL (EuroQol EQ-5D-3L). Analysis: mixed regression models, combined with stepwise variable selection, 10-fold cross validation and sensitivity analyses. Results Most important predictors of EQ-5D-3L at 6 months in best model (Nagelkerkeā€™s RĀ² 0.507) were depressive symptoms (āˆ’2.73 (95% CI: āˆ’3.56 to āˆ’1.91)), MAI (āˆ’0.39 (95% CI: āˆ’0.7 to āˆ’0.08)), baseline EQ-5D-3L (0.55 (95% CI: 0.47 to 0.64)). Models based on claims data and those predicting long-term outcomes based on both data sets produced low RĀ² values. In claims data-based model with highest explanatory power (RĀ²=0.16), previous falls/fall-related injuries, previous hospitalisations, age, number of involved physicians and disease count were most important predictor variables. Conclusions Best trial data-based model predicted HRQoL after 6 months well and included parameters of well-being not found in claims. Performance of claims data-based models and models predicting long-term outcomes was relatively weak. For generalisability, future studies should refit models by considering parameters representing well-being and functional status.Techniker Krankenkasse (German Statutory Healthcare Insurance Company

    Development and internal validation of prognostic models to predict negative health outcomes in older patients with multimorbidity and polypharmacy in general practice

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordBackground Polypharmacy interventions are resource-intensive and should be targeted to those at risk of negative health outcomes. Our aim was to develop and internally validate prognostic models to predict health-related quality of life (HRQoL) and the combined outcome of falls, hospitalisation, institutionalisation and nursing care needs, in older patients with multimorbidity and polypharmacy in general practices. Methods Design: two independent data sets, one comprising health insurance claims data (n=592 456), the other data from the PRIoritising MUltimedication in Multimorbidity (PRIMUM) cluster randomised controlled trial (n=502). Population: ā‰„60 years, ā‰„5 drugs, ā‰„3 chronic diseases, excluding dementia. Outcomes: combined outcome of falls, hospitalisation, institutionalisation and nursing care needs (after 6, 9 and 24 months) (claims data); and HRQoL (after 6 and 9 months) (trial data). Predictor variables in both data sets: age, sex, morbidity-related variables (disease count), medication-related variables (European Union-Potentially Inappropriate Medication list (EU-PIM list)) and health service utilisation. Predictor variables exclusively in trial data: additional socio-demographics, morbidity-related variables (Cumulative Illness Rating Scale, depression), Medication Appropriateness Index (MAI), lifestyle, functional status and HRQoL (EuroQol EQ-5D-3L). Analysis: mixed regression models, combined with stepwise variable selection, 10-fold cross validation and sensitivity analyses. Results Most important predictors of EQ-5D-3L at 6 months in best model (Nagelkerkeā€™s RĀ² 0.507) were depressive symptoms (āˆ’2.73 (95% CI: āˆ’3.56 to āˆ’1.91)), MAI (āˆ’0.39 (95% CI: āˆ’0.7 to āˆ’0.08)), baseline EQ-5D-3L (0.55 (95% CI: 0.47 to 0.64)). Models based on claims data and those predicting long-term outcomes based on both data sets produced low RĀ² values. In claims data-based model with highest explanatory power (RĀ²=0.16), previous falls/fall-related injuries, previous hospitalisations, age, number of involved physicians and disease count were most important predictor variables. Conclusions Best trial data-based model predicted HRQoL after 6 months well and included parameters of well-being not found in claims. Performance of claims data-based models and models predicting long-term outcomes was relatively weak. For generalisability, future studies should refit models by considering parameters representing well-being and functional status.Techniker Krankenkasse (German Statutory Healthcare Insurance Company

    Linear and cooperative signaling: roles for Stat proteins in the regulation of cell survival and apoptosis in the mammary epithelium

    Get PDF
    The mammary epithelium undergoes cyclical periods of cellular proliferation, differentiation and regression. These processes are under the control of the hormones secreted during pregnancy, lactation and involution. Signaling pathways have been identified that connect the hormonal stimuli with the transcription of genes responsible for the determination of the cellular fate. The kinetics of induction and deinduction have suggested that cytokine-activated Stat proteins play a crucial role. Stat5 is strongly activated towards the end of pregnancy, persists in an activated state during pregnancy and is rapidly inactivated after cessation of suckling. Stat3 activation is hardly detectable during lactation, but is strongly induced at the onset of involution. The phenotypes of mice in which these genes have been inactivated through homologous recombination corroborate some of the functional assignments deducted from the activation pattern. Stat3 activation seems to be a driving force in the induction of apoptosis early in the involution period

    The Tyrphostin Agent AG490 Prevents and Reverses Type 1 Diabetes in NOD Mice

    Get PDF
    <div><h3>Background</h3><p>Recent studies in the NOD (non-obese diabetic) mouse model of type 1 diabetes (T1D) support the notion that tyrosine kinase inhibitors have the potential for modulating disease development. However, the therapeutic effects of AG490 on the development of T1D are unknown.</p> <h3>Materials and Methods</h3><p>Female NOD mice were treated with AG490 (i.p, 1 mg/mouse) or DMSO starting at either 4 or 8 week of age, for five consecutive week, then once per week for 5 additional week. Analyses for the development and/or reversal of diabetes, insulitis, adoptive transfer, and other mechanistic studies were performed.</p> <h3>Results</h3><p>AG490 significantly inhibited the development of T1D (pā€Š=ā€Š0.02, pā€Š=ā€Š0.005; at two different time points). Monotherapy of newly diagnosed diabetic NOD mice with AG490 markedly resulted in disease remission in treated animals (nā€Š=ā€Š23) in comparision to the absolute inability (0%; 0/10, pā€Š=ā€Š0.003, Log-rank test) of DMSO and sustained eugluycemia was maintained for several months following drug withdrawal. Interestingly, adoptive transfer of splenocytes from AG490 treated NOD mice failed to transfer diabetes to recipient NOD.<em>Scid</em> mice. CD4 T-cells as well as bone marrow derived dendritic cells (BMDCs) from AG490 treated mice, showed higher expression of Foxp3 (p<0.004) and lower expression of co-stimulatory molecules, respectively. Screening of the mouse immune response gene arrary indicates that expression of costimulaotry molecule Ctla4 was upregulated in CD4+ T-cell in NOD mice treated with AG490, suggesting that AG490 is not a negative regulator of the immune system.</p> <h3>Conclusion</h3><p>The use of such agents, given their extensive safety profiles, provides a strong foundation for their translation to humans with or at increased risk for the disease.</p> </div

    Loss of Function of TET2 Cooperates with Constitutively Active KIT in Murine and Human Models of Mastocytosis

    Get PDF
    Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM

    Inhibition of STAT3 signaling prevents vascular smooth muscle cell proliferation and neointima formation

    Get PDF
    Dedifferentiation, migration, and proliferation of resident vascular smooth muscle cells (SMCs) are key components of neointima formation after vascular injury. Activation of signal transducer and activator of transcription-3 (STAT3) is suggested to be critically involved in this process, but the complex regulation of STAT3-dependent genes and the functional significance of inhibiting this pathway during the development of vascular proliferative diseases remain elusive. In this study, we demonstrate that STAT3 was activated in neointimal lesions following wire-induced injury in mice. Phosphorylation of STAT3 induced trans-activation of cyclin D1 and survivin in SMCs in vitro and in neointimal cells in vivo, thus promoting proliferation and migration of SMCs as well as reducing apoptotic cell death. WP1066, a highly potent inhibitor of STAT3 signaling, abrogated phosphorylation of STAT3 and dose-dependently inhibited the functional effects of activated STAT3 in stimulated SMCs. The local application of WP1066 via a thermosensitive pluronic F-127 gel around the dilated arteries significantly inhibited proliferation of neointimal cells and decreased the neointimal lesion size at 3Ā weeks after injury. Even though WP1066 application attenuated the injury-induced up-regulation of the chemokine RANTES at 6Ā h after injury, there was no significant effect on the accumulation of circulating cells at 1Ā week after injury. In conclusion, these data identify STAT3 as a key molecule for the proliferative response of SMC and neointima formation. Moreover, inhibition of STAT3 by the potent and specific compound WP1066 might represent a novel and attractive approach for the local treatment of vascular proliferative diseases

    Dietary intake and stress fractures among elite male combat recruits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Appropriate and sufficient dietary intake is one of the main requirements for maintaining fitness and health. Inadequate energy intake may have a negative impact on physical performance which may result in injuries among physically active populations. The purpose of this research was to evaluate a possible relationship between dietary intake and stress fracture occurrence among combat recruits during basic training (BT).</p> <p>Methods</p> <p>Data was collected from 74 combat recruits (18.2 Ā± 0.6 yrs) in the Israeli Defense Forces. Data analyses included changes in anthropometric measures, dietary intake, blood iron and calcium levels. Measurements were taken on entry to 4-month BT and at the end of BT. The occurrence of stress reaction injury was followed prospectively during the entire 6-month training period.</p> <p>Results</p> <p>Twelve recruits were diagnosed with stress fracture in the tibia or femur (SF group). Sixty two recruits completed BT without stress fractures (NSF). Calcium and vitamin D intakes reported on induction day were lower in the SF group compared to the NSF group-38.9% for calcium (589 Ā± 92 and 964 Ā± 373 mgĀ·d<sup>-1</sup>, respectively, <it>p </it>< 0.001), and-25.1% for vitamin D (117.9 Ā± 34.3 and 157.4 Ā± 93.3 IUĀ·d<sup>-1</sup>, respectively, <it>p </it>< 0.001). During BT calcium and vitamin D intake continued to be at the same low values for the SF group but decreased for the NSF group and no significant differences were found between these two groups.</p> <p>Conclusions</p> <p>The development of stress fractures in young recruits during combat BT was associated with dietary deficiency before induction and during BT of mainly vitamin D and calcium. For the purpose of intervention, the fact that the main deficiency is before induction will need special consideration.</p

    The Susceptibility of Trypanosomatid Pathogens to PI3/mTOR Kinase Inhibitors Affords a New Opportunity for Drug Repurposing

    Get PDF
    In our study we describe the potency of established phosphoinositide-3-kinase (PI3K) and mammalian Target of Rapamycin (mTOR) kinase inhibitors against three trypanosomatid parasites: Trypanosoma brucei, T. cruzi, and Leishmania sp., which are the causative agents for African sleeping sickness, Chagas disease, and leishmaniases, respectively. We noted that these parasites and humans express similar kinase enzymes. Since these similar human targets have been pursued by the drug industry for many years in the discovery of cellular growth and proliferation inhibitors, compounds developed as human anti-cancer agents should also have effect on inhibiting growth and proliferation of the parasites. With that in mind, we selected eight established PI3K and mTOR inhibitors for profiling against these pathogens. Among these inhibitors is an advanced clinical candidate against cancer, NVP-BEZ235, which we demonstrate to be a highly potent trypanocide in parasite cultures, and in a mouse model of T. brucei infection. Additionally, we describe observations of these inhibitors' effects on parasite growth and other cellular characteristics
    • ā€¦
    corecore