53 research outputs found

    Subcortical brain volumes, cortical thickness and cortical surface area in families genetically enriched for social anxiety disorder - a multiplex multigenerational neuroimaging study

    Get PDF
    Background Social anxiety disorder (SAD) is a disabling psychiatric condition with a genetic background. Brain alterations in gray matter (GM) related to SAD have been previously reported, but it remains to be elucidated whether GM measures are candidate endophenotypes of SAD. Endophenotypes are measurable characteristics on the causal pathway from genotype to phenotype, providing insight in genetically-based disease mechanisms. Based on a review of existing evidence, we examined whether GM characteristics meet two endophenotype criteria, using data from a unique sample of SAD-patients and their family-members of two generations. First, we investigated whether GM characteristics co-segregate with social anxiety within families genetically enriched for SAD. Secondly, heritability of the GM characteristics was estimated. Methods Families with a genetic predisposition for SAD participated in the Leiden Family Lab study on SAD; T1-weighted MRI brain scans were acquired (n = 110, 8 families). Subcortical volumes, cortical thickness and cortical surface area were determined for a-priori determined regions of interest (ROIs). Next, associations with social anxiety and heritabilities were estimated. Findings Several subcortical and cortical GM characteristics, derived from frontal, parietal and temporal ROIs, co-segregated with social anxiety within families (uncorrected p-level) and showed moderate to high heritability. Interpretation These findings provide preliminary evidence that GM characteristics of multiple ROIs, which are distributed over the brain, are candidate endophenotypes of SAD. Thereby, they shed light on the genetic vulnerability for SAD. Future research is needed to confirm these results and to link them to functional brain alterations and to genetic variations underlying these GM changes

    Paired Associative Stimulation of the Auditory System: A Proof-Of-Principle Study

    Get PDF
    Background Paired associative stimulation (PAS) consisting of repeated application of transcranial magnetic stimulation (TMS) pulses and contingent exteroceptive stimuli has been shown to induce neuroplastic effects in the motor and somatosensory system. The objective was to investigate whether the auditory system can be modulated by PAS. Methods Acoustic stimuli (4 kHz) were paired with TMS of the auditory cortex with intervals of either 45 ms (PAS(45 ms)) or 10 ms (PAS(10 ms)). Two-hundred paired stimuli were applied at 0.1 Hz and effects were compared with low frequency repetitive TMS (rTMS) at 0.1 Hz (200 stimuli) and 1 Hz (1000 stimuli) in eleven healthy students. Auditory cortex excitability was measured before and after the interventions by long latency auditory evoked potentials (AEPs) for the tone (4 kHz) used in the pairing, and a control tone (1 kHz) in a within subjects design. Results Amplitudes of the N1-P2 complex were reduced for the 4 kHz tone after both PAS(45 ms) and PAS(10 ms), but not after the 0.1 Hz and 1 Hz rTMS protocols with more pronounced effects for PAS(45 ms). Similar, but less pronounced effects were observed for the 1 kHz control tone. Conclusion These findings indicate that paired associative stimulation may induce tonotopically specific and also tone unspecific human auditory cortex plasticity

    The Rotterdam Scan Study: design update 2016 and main findings

    Get PDF

    The Rotterdam Study: 2016 objectives and design update

    Full text link

    FMRI, Antipsychotics and Schizophrenia. Influence of Different Antipsychotics on BOLD-Signal

    No full text
    In the last decade, functional Magnetic Resonance Imaging (FMRI) has been increasingly used to investigate the neurobiology of schizophrenia. This technique relies on changes in the blood-oxygen-level-dependent (BOLD) - signal, which changes in response to neural activity. Many FMRI studies on schizophrenia have examined medicated patients, but little is known about the effects of antipsychotic medication on the BOLD-signal. In this review we investigated to what extent studies in patients with schizophrenia (SC), who were treated with different antipsychotics, could give insight in the effects of antipsychotics on the BOLD-signal. A PubMed search was performed using the search items "schizophrenia", "FMRI", "antipsychotics" and "schizophrenia", "BOLD", "antipsychotics". Only articles in which there were at least two groups of patients with different treatments or in which patients were scanned twice with different treatments were selected. 18 articles, published between 1999 and 2009, fulfilled these criteria. Paradigms and results of these studies were compared regarding differences induced by the administered antipsychotics. This analysis showed no general effect of antipsychotics on the BOLD-signal. However, there is some evidence that the extent of blockade of the dopamine (DA) D-2 receptor does influence the BOLD-signal. Higher affinity to the dopamine D2 receptor, as expressed by a higher/lower inhibition constant (Ki) seems to cause a decrease in BOLD-signal
    • …
    corecore