119 research outputs found

    Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study

    Get PDF
    BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    Semidiurnal temperature changes caused by tidal front movements in the warm season in seabed habitats on the Georges Bank northern margin and their ecological implications

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain. The definitive version was published in PLoS ONE 8 (2013): e55273, doi:10.1371/journal.pone.0055273.Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ~100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (−2.48°C hr−1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.This study was supported by salary funds from the regular annual salary budget from Northeast Fisheries Science Center (NEFSC) and United States Geological Survey Woods Hole Coastal and Marine Science Center (USGS WH C&MSC), respectively; ship time funds from the NEFSC annual budget for days-at-sea ship operations; equipment from the NEFSC and USGS WH C&MSC annual equipment budgets

    What "best practice" could be in Palliative Care: an analysis of statements on practice and ethics expressed by the main Health Organizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In palliative care it would be necessary to refer to a model. Nevertheless it seems that there are no official statements which state and describe that model. We carried out an analysis of the statements on practice and ethics of palliative care expressed by the main health organizations to show which dimensions of end-of-life care are taken into consideration.</p> <p>Methods</p> <p>The official documents by the most representative health organisations committed to the definition of policies and guidelines for palliative and end-of-life care had been considered. The documents were analysed through a framework of the components of end-of-life care derived from literature, which was composed of 4 main "areas" and of 12 "sub-areas".</p> <p>Results</p> <p>Overall, 34 organizations were identified, 7 international organisations, and 27 organisations operating on the national level in four different countries (Australia, Canada, UK and United States). Up to 56 documents were selected and analysed. Most of them (38) are position statements. Relevant quotations from the documents were presented by "areas" and "sub-areas". In general, the "sub-areas" of symptoms control as well as those referring to relational and social issues are more widely covered by the documents than the "sub-areas" related to "preparation" and to "existential condition". Indeed, the consistency of end-of-life choices with the patient's wishes, as well as completion and meaningfulness at the end of life is given only a minor relevance.</p> <p>Conclusions</p> <p>An integrated model of the best palliative care practice is generally lacking in the documents. It might be argued that the lack of a fixed and coherent model is due to the relevance of unavoidable context issues in palliative care, such as specific cultural settings, patient-centred variables, and family specificity. The implication is that palliative care staff have continuously to adapt their model of caring to the specific needs and values of each patient, more than applying a fixed, although maybe comprehensive, care model.</p

    MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression

    Get PDF
    Background:MicroRNAs are small non-coding RNA molecules, which regulate central mechanisms of tumorigenesis. In colorectal tumours, the combination of gain of 8q and 13q is one of the major factors associated with colorectal adenoma to adenocarcinoma progression. Functional studies on the miR-17-92 cluster localised on 13q31 have shown that its transcription is activated by c-myc, located on 8q, and that it has oncogenic activities. We investigated the contribution of the miR-17-92 cluster during colorectal adenoma to adenocarcinoma progression.Methods:Expression levels of the miR-17-92 cluster were determined in 55 colorectal tumours and in 10 controls by real-time RT-PCR. Messenger RNA c-myc expression was also determined by real-time RT-PCR in 48 tumours with array comparative genomic hybridisation (aCGH) data available.Results:From the six members of the miR-17-92 cluster, all except miR-18a, showed significant increased expression in colorectal tumours with miR-17-92 locus gain compared with tumours without miR-17-92 locus gain. Unsupervised cluster analysis clustered the tumours based on the presence of miR-17-92 locus gain. Significant correlation between the expression of c-myc and the six miRNAs was also found.Conclusion:Increased expression of miR-17-92 cluster during colorectal adenoma to adenocarcinoma progression is associated to DNA copy number gain of miR17-92 locus on 13q31 and c-myc expression. © 2009 Cancer Research UK

    Gene Expression Divergence is Coupled to Evolution of DNA Structure in Coding Regions

    Get PDF
    Sequence changes in coding region and regulatory region of the gene itself (cis) determine most of gene expression divergence between closely related species. But gene expression divergence between yeast species is not correlated with evolution of primary nucleotide sequence. This indicates that other factors in cis direct gene expression divergence. Here, we studied the contribution of DNA three-dimensional structural evolution as cis to gene expression divergence. We found that the evolution of DNA structure in coding regions and gene expression divergence are correlated in yeast. Similar result was also observed between Drosophila species. DNA structure is associated with the binding of chromatin remodelers and histone modifiers to DNA sequences in coding regions, which influence RNA polymerase II occupancy that controls gene expression level. We also found that genes with similar DNA structures are involved in the same biological process and function. These results reveal the previously unappreciated roles of DNA structure as cis-effects in gene expression

    Precise Regulation of Gene Expression Dynamics Favors Complex Promoter Architectures

    Get PDF
    Promoters process signals through recruitment of transcription factors and RNA polymerase, and dynamic changes in promoter activity constitute a major noise source in gene expression. However, it is barely understood how complex promoter architectures determine key features of promoter dynamics. Here, we employ prototypical promoters of yeast ribosomal protein genes as well as simplified versions thereof to analyze the relations among promoter design, complexity, and function. These promoters combine the action of a general regulatory factor with that of specific transcription factors, a common motif of many eukaryotic promoters. By comprehensively analyzing stationary and dynamic promoter properties, this model-based approach enables us to pinpoint the structural characteristics underlying the observed behavior. Functional tradeoffs impose constraints on the promoter architecture of ribosomal protein genes. We find that a stable scaffold in the natural design results in low transcriptional noise and strong co-regulation of target genes in the presence of gene silencing. This configuration also exhibits superior shut-off properties, and it can serve as a tunable switch in living cells. Model validation with independent experimental data suggests that the models are sufficiently realistic. When combined, our results offer a mechanistic explanation for why specific factors are associated with low protein noise in vivo. Many of these findings hold for a broad range of model parameters and likely apply to other eukaryotic promoters of similar structure

    Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution

    Get PDF
    The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity
    corecore