44 research outputs found

    Chemical characteristics and limnology of Loskop Dam on the Olifants River (South Africa), in light of recent fish and crocodile mortalities

    Get PDF
    A declining crocodile population and fish mortalities attributed to pansteatitis, along with increasing blooms of Microcystis aeruginosa and Ceratium hirundinella, have led to serious concerns about water quality in Loskop Dam, on the Olifants River, South Africa. Major impacts include acid mine drainage and eutrophication associated with sewage effluent. However, the specific causes of pansteatitis remain elusive. In 2011 the water chemistry and limnology of Loskop Dam were studied to determine factors that may be influencing aquatic ecosystem health. Long-term monitoring data collected by the Department of Water Affairs were analysed for trends using a seasonal Mann-Kendall trend test, and were used to determine the trophic state of Loskop Dam using the Carlson index. Multiple sites were sampled which showed the reservoir was heterogeneous with regard to nutrient concentrations, algal biomass and dissolved metals. Specifically, the transitional zone was characterised by frequent algal blooms, resulting in fluctuating dissolved oxygen (range = 2.1–14.5 mg/ℓ) and pH (range = 7.35–10.59) levels. Using total phosphorus, Secchi depth, and chlorophyll-a concentrations, the trophic state of Loskop Dam was classified as meso- to eutrophic. Significant positive trends were observed in total (Tau = 0.422) and dissolved inorganic (Tau = 0.193) phosphorus.The reservoir showed a monomictic pattern of summer stratification (October to April) and holomictic winter circulation (June to July), with an increase in the depth and extent of anoxia in the hypolimnion when compared to previous research. Simultaneous elevated concentrations of manganese (>370 μg/ℓ) and iron in near-bottom water samples coincided with hypolimnetic anoxia. Aluminium concentrations exceeded the target water quality range (>10 μg/ℓ) during summer (December) in both surface and near-bottom water samples. We conclude that fish in Loskop Dam are periodically exposed to several physiological stressors including elevated ammonia, aluminium, iron and manganese and possibly hydrogen sulphide, as well as low dissolved oxygen. While these factors have never individually been linked to pansteatitis, their combined impacts have not been studied. To ensure the sustainability of Loskop Dam, catchment management plans must focus on reducing phosphorus inputs, and continue seeking treatment solutions for mine-water associated with abandoned and working coal mines.Keywords: Loskop Dam, limnology, pansteatitis, eutrophication, Olifants Rive

    Experimental Incubations Elicit Profound Changes in Community Transcription in OMZ Bacterioplankton

    Get PDF
    Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for “challenging” microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia) increased 4–13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations

    Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila

    Get PDF
    THE vestimentiferan tubeworm Riftia pachyptila is found around hydrothermal vent areas in the deep sea. Intracellular bacterial chemoautotrophic symbionts use the oxidation of sulphide from the effluent of the vents as an energy source for CO2 fixation. They apparently provide most or all of the nutritional requirements for their gutless hosts1–5. This kind of symbiosis has since been found in many other species from various other phyla from other habitats6–9. Here we present results that the bacteria of R. pachyptila may cover a significant fraction of their respiratory needs by the use of nitrate in addition to oxygen. Nitrate is reduced to nitrite, which may be the end product (nitrate respiration)10 or it may be further reduced to nitrogen gas (denitrification)11. This metabolic trait may have an important role in the colonization of hypoxic habitats in general by animals with this kind of symbiosis

    INFLUENCE OF PHYSICAL AND BIOLOGICAL PROCESSES ON THE CONCENTRATION OF O-2 AND CO2 IN THE ICE-COVERED WEDDELL SEA IN THE SPRING OF 1988

    No full text
    In October and November 1988, measurements of oxygen and total dissolved inorganic carbon (TCO2) concentrations were made in the northwestern Weddell Sea to the south and north of the marginal ice edge, in order to estimate the relative importance, regarding their variations, of both biological (photosynthesis and respiration) and physical (transport of O2 and CO2 by turbulent movements and by intrusion from the atmosphere) processes. In the ice-covered region, both respiration and upwelling determined the O2 and TCO2 variations, whilst in the open water just north of the marginal ice edge, photosynthetic activity was the most important factor controlling O2 and TCO2 levels. These findings underline the importance of the activity of the pelagic ecosystem in determining the concentration of O2 and CO2 not only in the ice-free but also in the ice-covered Antarctic Ocean
    corecore