212 research outputs found

    PAH–DNA Adducts, Cigarette Smoking, GST Polymorphisms, and Breast Cancer Risk

    Get PDF
    BackgroundPolycyclic aromatic hydrocarbons (PAHs) may increase breast cancer risk, and the association may be modified by inherited differences in deactivation of PAH intermediates by glutathione S-transferases (GSTs). Few breast cancer studies have investigated the joint effects of multiple GSTs and a PAH biomarker.ObjectiveWe estimated the breast cancer risk associated with multiple polymorphisms in the GST gene (GSTA1, GSTM1, GSTP1, and GSTT1) and the interaction with PAH–DNA adducts and cigarette smoking.MethodsWe conducted unconditional logistic regression using data from a population-based sample of women (cases/controls, respectively): GST polymorphisms were genotyped using polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight assays (n = 926 of 916), PAH–DNA adduct blood levels were measured by competitive enzyme-linked immunosorbent assay (n = 873 of 941), and smoking status was assessed by in-person questionnaires (n = 943 of 973).ResultsOdds ratios for joint effects on breast cancer risk among women with at least three variant alleles were 1.56 [95% confidence interval (CI), 1.13–2.16] for detectable PAH–DNA adducts and 0.93 (95% CI, 0.56–1.56) for no detectable adducts; corresponding odds ratios for three or more variants were 1.18 (95% CI, 0.82–1.69) for ever smokers and 1.44 (95% CI, 0.97–2.14) for never smokers. Neither interaction was statistically significant (p = 0.43 and 0.62, respectively).ConclusionWe found little statistical evidence that PAHs interacted with GSTT1, GSTM1, GSTP1, and GSTA1 polymorphisms to further increase breast cancer risk

    Associations Between Methylation of Paternally Expressed Gene 3 (PEG3), Cervical Intraepithelial Neoplasia and Invasive Cervical Cancer.

    Get PDF
    Cytology-based screening for invasive cervical cancer (ICC) lacks sensitivity and specificity to discriminate between cervical intraepithelial neoplasia (CIN) likely to persist or progress from cases likely to resolve. Genome-wide approaches have been used to identify DNA methylation marks associated with CIN persistence or progression. However, associations between DNA methylation marks and CIN or ICC remain weak and inconsistent. Between 2008-2009, we conducted a hospital-based, case-control study among 213 Tanzania women with CIN 1/2/3 or ICC. We collected questionnaire data, biopsies, peripheral blood, cervical scrapes, Human papillomavirus (HPV) and HIV-1 infection status. We assessed PEG3 methylation status by bisulfite pyrosequencing. Multinomial logistic regression was used to estimate odds ratios (OR) and confidence intervals (CI 95%) for associations between PEG3 methylation status and CIN or ICC. After adjusting for age, gravidity, hormonal contraceptive use and HPV infection, a 5% increase in PEG3 DNA methylation was associated with increased risk for ICC (OR = 1.6; 95% CI 1.2-2.1). HPV infection was associated with a higher risk of CIN1-3 (OR = 15.7; 95% CI 5.7-48.6) and ICC (OR = 29.5, 95% CI 6.3-38.4). Infection with high risk HPV was correlated with mean PEG3 differentially methylated regions (DMRs) methylation (r = 0.34 p<0.0001), while the correlation with low risk HPV infection was weaker (r = 0.16 p = 0.047). Although small sample size limits inference, these data support that PEG3 methylation status has potential as a molecular target for inclusion in CIN screening to improve prediction of progression. Impact statement: We present the first evidence that aberrant methylation of the PEG3 DMR is an important co-factor in the development of Invasive cervical carcinoma (ICC), especially among women infected with high risk HPV. Our results show that a five percent increase in DNA methylation of PEG3 is associated with a 1.6-fold increase ICC risk. Suggesting PEG3 methylation status may be useful as a molecular marker for CIN screening to improve prediction of cases likely to progress

    Confluence of resonant laser excitation and bi-directional quantum dot nuclear spin polarization

    Full text link
    Resonant laser scattering along with photon correlation measurements have established the atom-like character of quantum dots. Here, we present measurements which challenge this identification for a wide range of experimental parameters: the absorption lineshapes that we measure at magnetic fields exceeding 1 Tesla indicate that the nuclear spins polarize by an amount that ensures locking of the quantum dot resonances to the incident laser frequency. In contrast to earlier experiments, this nuclear spin polarization is bi-directional, allowing the electron+nuclear spin system to track the changes in laser frequency dynamically on both sides of the quantum dot resonance. Our measurements reveal that the confluence of the laser excitation and nuclear spin polarization suppresses the fluctuations in the resonant absorption signal. A master equation analysis shows narrowing of the nuclear Overhauser field variance, pointing to potential applications in quantum information processing

    Reduced susceptibility to pyrethroid insecticide treated nets by the malaria vector Anopheles gambiae s.l. in western Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrethroid insecticide-treated mosquito nets are massively being scaled-up for malaria prevention particularly in children under five years of age and pregnant mothers in sub-Saharan Africa. However, there is serious concern of the likely evolution of widespread pyrethroid resistance in the malaria vector <it>Anopheles gambiae s.l</it>. due to the extensive use of pyrethroid insecticide-treated mosquito nets. The purpose of this study was to ascertain the status of pyrethroid resistance in <it>An. gambiae s.l</it>. in western Uganda.</p> <p>Methods</p> <p>Wild mosquitoes (1–2 days old) were exposed in 10 replicates to new nets impregnated with K-othrine (Deltamethrin 25 mg/m<sup>2</sup>), Solfac EW50 (Cyfluthrin 50 mg/m<sup>2</sup>) and Fendona 6SC (Cypermethrin 50 mg/m<sup>2</sup>) and observed under normal room temperature and humidity (Temperature 24.8°C���27.4°C, Humidity 65.9–45.7). A similar set of mosquitoes collected from the control area 80 km away were exposed to a deltamethrin 25 mg/m<sup>2 </sup>impregnated net at the same time and under the same conditions. The 10-year mean KDT<sub>50 </sub>and mortality rates for each of the three pyrethroid insecticides were compared using the Student <it>t</it>-test.</p> <p>Results</p> <p>A significant increase in the mean knockdown time (KDT<sub>50</sub>) and mean mortality rate were observed in almost all cases an indication of reduced susceptibility. The overall results showed a four-fold increase in the mean knockdown time (KDT<sub>50</sub>) and 1.5-fold decrease in mortality rate across the three pyrethroid insecticides. There was a significant difference in the 10-year mean KDT<sub>50 </sub>between deltamethrin and cyfluthrin; deltamethrin and cypermethrin, but no significant difference between cyfluthrin and cypermethrin. The 10-year mean difference in KDT50 for mosquitoes exposed to deltamethrin from the control site was significantly different from that of mosquitoes from the intervention site (p<0.05, t=3.979, 9df). The 10-year mean difference in mortality rate between deltamethrin (84.64%); cyfluthrin (74.18%); cypermethrin (72.19%) and the control (90.45%) showed a significant decline in mortality across all the three insecticides.</p> <p>Conclusion</p> <p>Generally the results showed a trend of increase in mosquito resistance status with cross-resistance against all the three pyrethroid insecticides. This study reveals for the first time the development of pyrethroid resistance in <it>An. gambiae s.l</it>. in Western Uganda. It is therefore strongly recommended that the impact of this development on malaria control efforts be closely monitored and alternative fabric treatments be considered before this problem curtails community wide implementation of this malaria control strategy in Uganda.</p

    High resolution nuclear magnetic resonance spectroscopy of highly-strained quantum dot nanostructures

    Full text link
    Much new solid state technology for single-photon sources, detectors, photovoltaics and quantum computation relies on the fabrication of strained semiconductor nanostructures. Successful development of these devices depends strongly on techniques allowing structural analysis on the nanometer scale. However, commonly used microscopy methods are destructive, leading to the loss of the important link between the obtained structural information and the electronic and optical properties of the device. Alternative non-invasive techniques such as optically detected nuclear magnetic resonance (ODNMR) so far proved difficult in semiconductor nano-structures due to significant strain-induced quadrupole broadening of the NMR spectra. Here, we develop new high sensitivity techniques that move ODNMR to a new regime, allowing high resolution spectroscopy of as few as 100000 quadrupole nuclear spins. By applying these techniques to individual strained self-assembled quantum dots, we measure strain distribution and chemical composition in the volume occupied by the confined electron. Furthermore, strain-induced spectral broadening is found to lead to suppression of nuclear spin magnetization fluctuations thus extending spin coherence times. The new ODNMR methods have potential to be applied for non-invasive investigations of a wide range of materials beyond single nano-structures, as well as address the task of understanding and control of nuclear spins on the nanoscale, one of the central problems in quantum information processing

    Genetic polymorphisms in the cyclooxygenase-2 gene, use of nonsteroidal anti-inflammatory drugs, and breast cancer risk

    Get PDF
    INTRODUCTION: The association between use of nonsteroidal anti-inflammatory drugs (NSAIDs) and breast cancer risk remains unclear. Inconsistencies in previously reported findings may be partly due to differences in expression of cyclooxygenase (COX)-2. We hypothesized that genetic polymorphisms (COX-2 .926, COX-2 .5209, and COX-2 .8473) may reduce overall breast cancer risk or risk for subtypes of breast cancer by modulating the inflammatory response and may interact with aspirin or any NSAID use. METHODS: We conducted a population-based, case-control study in which we genotyped 1,067 breast cancer cases and 1,110 control individuals included in the Long Island Breast Cancer Study Project. RESULTS: No major effects of the three COX-2 variant alleles on breast cancer risk were found. A total of eight distinct haplotypes and 18 diplotypes were observed in the population. Overall, no significant associations between COX-2 haplotypes/diplotypes and breast cancer risk were observed. Among women who used aspirin or any NSAID there was little evidence for an interaction with the at-risk COX-2 genotypes, with one exception. Among women with hormone receptor positive breast cancer, the reduced risk for any NSAID use was only evident among those who had at least one variant C allele of COX-2 .8473 (odds ratio = 0.7, 95% confidence interval = 0.5 to 1.0; P for the interaction = 0.02). There was no corresponding interaction for aspirin use, possibly because of limited power. CONCLUSION: These data provide modest evidence that the C allele of COX-2 .8473 may interact with NSAIDs to reduce risk for hormone receptor positive breast cancer

    Coherent Population Trapping of an Electron Spin in a Single Negatively Charged Quantum Dot

    Full text link
    Coherent population trapping (CPT) refers to the steady-state trapping of population in a coherent superposition of two ground states which are coupled by coherent optical fields to an intermediate state in a three-level atomic system. Recently, CPT has been observed in an ensemble of donor bound spins in GaAs and in single nitrogen vacancy centers in diamond by using a fluorescence technique. Here we report the demonstration of CPT of an electron spin in a single quantum dot (QD) charged with one electron.Comment: to be appeared in Nature Physic

    Empowerment and Parent Gain as Mediators and Moderators of Distress in Mothers of Children with Autism Spectrum Disorders

    Get PDF
    Mothers of children with Autism Spectrum Disorders (ASD) experience considerable amounts of distress and experiences of crisis. The Family Adjustment and Adaptation Response model provides a theory for understanding the experience of distress and family crisis in families, and the purpose of the present study was to examine experiences of distress in mothers of individuals with ASD using this framework. We specifically investigated how parent empowerment and positive gain are related to their experiences of distress, whether as mediators or as moderators of child aggression. Participants included 156 mothers of children with ASD ranging in age from 4 – 21 years. Mothers completed an online survey of demographics, problem behaviors, family empowerment, positive gain, and distress. We conducted path analyses of multiple mediation and moderation. Results indicated that greater child problem behavior was related to less parent empowerment, which was related to greater maternal distress, supporting empowerment as a partial mediator. At the same time, greater child aggression was not related to maternal distress in mothers who report high rates of positive gain, suggesting that parent gain functions as a moderator. The implications for how and when clinicians intervene with families of children with ASD are discussed
    • …
    corecore