110 research outputs found

    The impact of non-severe burn injury on cardiac function and long-term cardiovascular pathology

    Get PDF
    Severe burn injury significantly affects cardiovascular function for up to 3 years. However, whether this leads to long-term pathology is unknown. The impact of non-severe burn injury, which accounts for over 80% of admissions in developed countries, has not been investigated. Using a rodent model of non-severe burn injury with subsequent echocardiography we showed significantly increased left ventricular end systolic diameter (LVESD) and ventricular wall thickness at up to 3 months post-injury. Use of propranolol abrogated the changes in cardiac measures observed. Subsequently we investigated changes in a patient cohort with non-severe injury. Echocardiography measured at baseline and at 3 months post-injury showed increased LVESD at 3 months and significantly decreased posterior wall diameter. Finally, 32 years of Western Australian hospital records were used to investigate the incidence of cardiovascular disease admissions after burn injury. People who had experienced a burn had increased hospital admissions and length of stay for cardiovascular diseases when compared to a matched uninjured cohort. This study presents animal, patient and population data that strongly suggest non-severe burn injury has significant effects on cardiovascular function and long-term morbidity in some burn patients. Identification of patients at risk will promote better intervention and outcomes for burn patients

    Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy

    Get PDF
    Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total

    Reproducibility of the airway response to an exercise protocol standardized for intensity, duration, and inspired air conditions, in subjects with symptoms suggestive of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise testing to aid diagnosis of exercise-induced bronchoconstriction (EIB) is commonly performed. Reproducibility of the airway response to a standardized exercise protocol has not been reported in subjects being evaluated with mild symptoms suggestive of asthma but without a definite diagnosis. This study examined reproducibility of % fall in FEV<sub>1 </sub>and area under the FEV<sub>1 </sub>time curve for 30 minutes in response to two exercise tests performed with the same intensity and duration of exercise, and inspired air conditions.</p> <p>Methods</p> <p>Subjects with mild symptoms of asthma exercised twice within approximately 4 days by running for 8 minutes on a motorized treadmill breathing dry air at an intensity to induce a heart rate between 80-90% predicted maximum; reproducibility of the airway response was expressed as the 95% probability interval.</p> <p>Results</p> <p>Of 373 subjects challenged twice 161 were positive (≥10% fall FEV<sub>1 </sub>on at least one challenge). The EIB was mild and 77% of subjects had <15% fall on both challenges. Agreement between results was 76.1% with 56.8% (212) negative (< 10% fall FEV<sub>1</sub>) and 19.3% (72) positive on both challenges. The remaining 23.9% of subjects had only one positive test. The 95% probability interval for reproducibility of the % fall in FEV<sub>1 </sub>and AUC<sub>0-30 </sub>min was ± 9.7% and ± 251% for all 278 adults and ± 13.4% and ± 279% for all 95 children. The 95% probability interval for reproducibility of % fall in FEV<sub>1 </sub>and AUC<sub>0-30 min </sub>for the 72 subjects with two tests ≥10% fall FEV<sub>1 </sub>was ± 14.6% and ± 373% and for the 34 subjects with two tests ≥15% fall FEV<sub>1 </sub>it was ± 12.2% and ± 411%. Heart rate and estimated ventilation achieved were not significantly different either on the two test days or when one test result was positive and one was negative.</p> <p>Conclusions</p> <p>Under standardized, well controlled conditions for exercise challenge, the majority of subjects with mild symptoms of asthma demonstrated agreement in test results. Performing two tests may need to be considered when using exercise to exclude or diagnose EIB, when prescribing prophylactic treatment to prevent EIB and when designing protocols for clinical trials.</p

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today

    Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, <it>Pocillopora damicornis</it>, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, <it>P. damicornis </it>is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform.</p> <p>Description</p> <p>Both the raw reads (n = 1, 116, 551) and the assembled contigs (n = 70, 786; mean length = 836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase <url>http://www.PocilloporaBase.org</url>. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae.</p> <p>Conclusions</p> <p><it>P. damicornis </it>now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase <url>http://www.PocilloporaBase.org</url>, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.</p

    How Plastic Can Phenotypic Plasticity Be? The Branching Coral Stylophora pistillata as a Model System

    Get PDF
    Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes), originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips) or to structural preparative manipulations (representing a single or two growth axes). Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state). Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not predetermine in controlling astogeny, allow formation of species-specific architecture product through integrated but variable developmental routes. This adaptive plasticity or regeneration is an efficient mechanism by which isolated fragments of branching coral species cope with external environmental forces

    Dyspnea assessment and adverse events during sputum induction in COPD

    Get PDF
    BACKGROUND: The inhalation of normal or hypertonic saline during sputum induction (SI) may act as an indirect bronchoconstrictive stimulus leading to dyspnea and lung function deterioration. Our aim was to assess dyspnea and adverse events in COPD patients who undergo SI following a safety protocol. METHODS: Sputum was induced by normal and hypertonic (4.5%) saline solution in 65 patients with COPD of varying severity. In order to minimize saline-induced bronchoconstriction a protocol based on the European Respiratory Society sputum induction Task group report was followed. Dyspnea change was scored using the Borg scale and lung function was assessed by spirometry and oximetry. RESULTS: Borg score changes [median(IQR) 1.5(0–2)] were observed during SI in 40 subjects; 16 patients required temporary discontinuation of the procedure due to dyspnea-general discomfort and 2 did not complete the session due to dyspnea-wheezing. The change in Borg dyspnea score was significantly correlated with oxygen saturation and heart rate changes and with discontinuation of the procedure due to undesired symptoms. 19 subjects presented an hyperresponsive reaction (decline>20% from baseline FEV(1)). No significant correlation between Borg changes and FEV(1)decline was found. Patients with advanced COPD presented significantly greater Borg and oxygen saturation changes than patients with less severe disease (p = 0.02 and p = 0.001, respectively). Baseline FEV(1), oxygen saturation and 6MWT demonstrated significant diagnostic values in distinguishing subjects who develop an adverse physiologic reaction during the procedure. CONCLUSION: COPD patients undergoing SI following a safety protocol do not experience major adverse events. Dyspnea and oxygen desaturation is more likely to occur in patients with disease in advanced stages, leading to short discontinuation or less frequently to termination of the procedure. Baseline FEV(1), oxygen saturation and 6MWT may have a prognostic value for the development of these adverse events and might be useful to be evaluated in advance

    Tiny Sea Anemone from the Lower Cambrian of China

    Get PDF
    Background Abundant fossils from the Ediacaran and Cambrian showing cnidarian grade grossly suggest that cnidarian diversification occurred earlier than that of other eumetazoans. However, fossils of possible soft-bodied polyps are scanty and modern corals are dated back only to the Middle Triassic, although molecular phylogenetic results support the idea that anthozoans represent the first major branch of the Cnidaria. Because of difficulties in taxonomic assignments owing to imperfect preservation of fossil cnidarian candidates, little is known about forms ancestral to those of living groups. Methods and Findings We have analyzed the soft-bodied polypoid microfossils Eolympia pediculata gen. et sp. nov. from the lowest Cambrian Kuanchuanpu Formation in southern China by scanning electron microscopy and computer-aided microtomography after isolating fossils from sedimentary rocks by acetic acid maceration. The fossils, about a half mm in body size, are preserved with 18 mesenteries including directives bilaterally arranged, 18 tentacles and a stalk-like pedicle. The pedicle suggests a sexual life cycle, while asexual reproduction by transverse fission also is inferred by circumferential grooves on the body column. Conclusions The features found in the present fossils fall within the morphological spectrum of modern Hexacorallia excluding Ceriantharia, and thus Eolympia pediculata could be a stem member for this group. The fossils also demonstrate that basic features characterizing modern hexacorallians such as bilateral symmetry and the reproductive system have deep roots in the Early Cambrian.Funding was provided by the National Science Foundation of China (http://www.nsfc.gov.cn/) grants 40830208, 40602003, 50702005 to J. Han and D. G. Shu, and by MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University, China (http://sklcd.nwu.edu.cn/) to J. Han and D. G. Shu. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Randomized Controlled Trial of Fish Oil and Montelukast and Their Combination on Airway Inflammation and Hyperpnea-Induced Bronchoconstriction

    Get PDF
    Both fish oil and montelukast have been shown to reduce the severity of exercise-induced bronchoconstriction (EIB). The purpose of this study was to compare the effects of fish oil and montelukast, alone and in combination, on airway inflammation and bronchoconstriction induced by eucapnic voluntary hyperpnea (EVH) in asthmatics. In this model of EIB, twenty asthmatic subjects with documented hyperpnea-induced bronchoconstriction (HIB) entered a randomized double-blind trial. All subjects entered on their usual diet (pre-treatment, n = 20) and then were randomly assigned to receive either one active 10 mg montelukast tablet and 10 placebo fish oil capsules (n = 10) or one placebo montelukast tablet and 10 active fish oil capsules totaling 3.2 g EPA and 2.0 g DHA (n = 10) taken daily for 3-wk. Thereafter, all subjects (combination treatment; n = 20) underwent another 3-wk treatment period consisting of a 10 mg active montelukast tablet or 10 active fish oil capsules taken daily. While HIB was significantly inhibited (p0.017) between treatment groups; percent fall in forced expiratory volume in 1-sec was −18.4±2.1%, −9.3±2.8%, −11.6±2.8% and −10.8±1.7% on usual diet (pre-treatment), fish oil, montelukast and combination treatment respectively. All three treatments were associated with a significant reduction (p0.017) in these biomarkers between treatments. While fish oil and montelukast are both effective in attenuating airway inflammation and HIB, combining fish oil with montelukast did not confer a greater protective effect than either intervention alone. Fish oil supplementation should be considered as an alternative treatment for EIB
    corecore