50 research outputs found

    Measurement of ocular compliance using iPerfusion

    Get PDF
    The pressure-volume relationship of the eye is determined by the biomechanical properties of the corneoscleral shell and is classically characterised by Friedenwald's coefficient of ocular rigidity or, alternatively, by the ocular compliance (OC), defined as dV/dP. OC is important in any situation where the volume (V) or pressure (P) of the eye is perturbed, as occurs during several physiological and pathological processes. However, accurately measuring OC is challenging, particularly in rodents. We measured OC in 24 untreated enucleated eyes from 12 C57BL/6 mice using the iPerfusion system to apply controlled pressure steps, whilst measuring the time-varying flow rate into the eye. Pressure and flow data were analysed by a “Discrete Volume” (integrating the flow trace) and “Step Response” method (fitting an analytical solution to the pressure trace). OC evaluated at 13 mmHg was similar between the two methods (Step Response, 41 [37, 46] vs. Discrete Volume, 42 [37, 48] nl/mmHg; mean [95% CI]), although the Step Response Method yielded tighter confidence bounds on individual eyes. OC was tightly correlated between contralateral eyes (R2 = 0.75, p = 0.0003). Following treatment with the cross-linking agent genipin, OC decreased by 40 [33, 47]% (p = 0.0001; N = 6, Step Response Method). Measuring OC provides a powerful tool to assess corneoscleral biomechanics in mice and other species

    State of the art of immunoassay methods for B-type natriuretic peptides: An update

    Get PDF
    The aim of this review article is to give an update on the state of the art of the immunoassay methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides. Using chromatographic procedures, several studies reported an increasing number of circulating peptides related to BNP in human plasma of patients with heart failure. These peptides may have reduced or even no biological activity. Furthermore, other studies have suggested that, using immunoassays that are considered specific for BNP, the precursor of the peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of patients with heart failure. Because BNP immunoassay methods show large (up to 50%) systematic differences in values, the use of identical decision values for all immunoassay methods, as suggested by the most recent international guidelines, seems unreasonable. Since proBNP significantly cross-reacts with all commercial immunoassay methods considered specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians should take into account that there are large systematic differences between methods when they compare results from different laboratories that use different BNP immunoassays. On the other hand, clinical laboratories should take part in external quality assessment (EQA) programs to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors believe that the development of more specific methods for the active peptide, BNP1–32, should reduce the systematic differences between methods and result in better harmonization of results

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe

    Age and menopause effects on ocular compliance and aqueous outflow.

    Get PDF
    Purpose: Glaucoma is the second leading cause of blindness worldwide. Recent work suggests that estrogen and the timing of menopause play a role in modulating the risk of developing glaucoma. Menopause is known to cause modest changes in intraocular pressure; yet, whether this change is mediated through the outflow pathway remains unknown. Menopause also affects tissue biomechanical properties throughout the body; however, the impact of menopause on ocular biomechanical properties is not well characterized. Methods: Here, we simultaneously assessed the impact of menopause on aqueous outflow facility and ocular compliance, as a measure of corneoscleral shell biomechanics. We used young (3-4 months old) and middle-aged (9-10 months old) Brown Norway rats. Menopause was induced by ovariectomy (OVX), and control animals underwent sham surgery, resulting in the following groups: young sham (n = 5), young OVX (n = 6), middle-aged sham (n = 5), and middle-aged OVX (n = 5). Eight weeks postoperatively, we measured outflow facility and ocular compliance. Results: Menopause resulted in a 34% decrease in outflow facility and a 19% increase in ocular compliance (P = 0.011) in OVX animals compared with sham controls (P = 0.019). Conclusions: These observations reveal that menopause affects several key physiological factors known to be associated with glaucoma, suggesting that menopause may contribute to an increased risk of glaucoma in women
    corecore