49 research outputs found

    Intra-Genomic Ribosomal RNA Polymorphism and Morphological Variation in Elphidium macellum Suggests Inter-Specific Hybridization in Foraminifera

    Get PDF
    Elphidium macellum is a benthic foraminifer commonly found in the Patagonian fjords. To test whether its highly variable morphotypes are ecophenotypes or different genotypes, we analysed 70 sequences of the SSU rRNA gene from 25 specimens. Unexpectedly, we identified 11 distinct ribotypes, with up to 5 ribotypes co-occurring within the same specimen. The ribotypes differ by varying blocks of sequence located at the end of stem-loop motifs in the three expansion segments specific to foraminifera. These changes, distinct from typical SNPs and indels, directly affect the structure of the expansion segments. Their mosaic distribution suggests that ribotypes originated by recombination of two or more clusters of ribosomal genes. We propose that this expansion segment polymorphism (ESP) could originate from hybridization of morphologically different populations of Patagonian Elphidium. We speculate that the complex geological history of Patagonia enhanced divergence of coastal foraminiferal species and contributed to increasing genetic and morphological variation

    Hypotheses to explain the origin of species in Amazonia

    Full text link

    The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)

    Get PDF
    Much of our knowledge of the drivers of immune variation, and how these responses vary over time, comes from humans, domesticated livestock or laboratory organisms. While the genetic basis of variation in immune responses have been investigated in these systems, there is a poor understanding of how genetic variation influences immunity in natural, untreated populations living in complex environments. Here, we examine the genetic architecture of variation in immune traits in the Soay sheep of St Kilda, an unmanaged population of sheep infected with strongyle gastrointestinal nematodes. We assayed IgA, IgE and IgG antibodies against the prevalent nematode Teladorsagia circumcincta in the blood plasma of > 3,000 sheep collected over 26 years. Antibody levels were significantly heritable (h2 = 0.21 to 0.57) and highly stable over an individual’s lifespan. IgA levels were strongly associated with a region on chromosome 24 explaining 21.1% and 24.5% of heritable variation in lambs and adults, respectively. This region was adjacent to two candidate loci, Class II Major Histocompatibility Complex Transactivator (CIITA) and C-Type Lectin Domain Containing 16A (CLEC16A). Lamb IgA levels were also associated with the immunoglobulin heavy constant loci (IGH) complex, and adult IgE levels and lamb IgA and IgG levels were associated with the major histocompatibility complex (MHC). This study provides evidence of high heritability of a complex immunological trait under natural conditions and provides the first evidence from a genome-wide study that large effect genes located outside the MHC region exist for immune traits in the wild

    The Rhyolitic Plateau of the Marifil Formation (Jurassic): A Gondwana Paleosurface in the Southeastern Portion of the Northern Patagonian Massif

    No full text
    Along the southeastern border of the Northern Patagonian Massif of the provinces of Río Negro and Chubut, an extensive surface is presently called the “Rhyolitic” or “Ignimbritic Plateau.” This large geomorphological unit has a geographical extension which exceeds 50,000 km2 and it is located between 40°30′ and 44° lat. S and between the Atlantic Ocean coast and 67°30′ long. W. It is characterized by a smooth topography of low and rounded hills, shallow endorheic basins, and a poorly integrated drainage network. The drainage network is mostly nonfunctional and roughly coincident with the bedrock fracture system. Bedrock is almost exclusively composed of the acid volcanic and pyroclastic rocks of the Marifil Formation of Early to Middle Jurassic age. A significant proportion of the identified positive landforms present form and nature very similar to that of “bornhardts,” as defined by Twidale (Revista de la Asociación Geológica Argentina 62(1):139–153, 2007), basically for granites. Bornhardts are uncovered dome hills (Twidale, Revista de la Asociación Geológica Argentina 62(1):139–153, 2007) which are usually frequent in Gondwana landscapes (Fairbridge, Encyclopedia of geomorphology. Ronald, New York, 1968). Furthermore, the ubiquitous presence of “corestones” (isolated, large, rounded boulders), which are taken as indicators of an ancient, deep weathering front, supports the hypothesis that these paleosurfaces were generated by long-term, intense chemical weathering processes. The deep weathering would have occurred over at least 25 Ma, between the Middle and Late Jurassic, under a hot and moist paleoenvironment and under extremely stable tectonic conditions. The mobilization, denudation, and later sedimentation of the regolith/saprolite formed under such conditions would have taken place during several erosion episodes, mostly under tectonic forcing, between the Late Jurassic and the Late Cretaceous. The important clay and other secondary mineral accumulations (some of them significant sources of uranium) in the region would have a direct genetic relationship with the development of these paleosurfaces. From the Late Miocene onwards, the colder and drier conditions that were imposed in the region by the uprising Andes and the establishment of mountain glaciers and ice caps during numerous glaciations allowed the modification of this landscape by hydro-eolian processes which generated the widely distributed endorheic depressions (locally known as “bajos sin salida”) by deflation and occasionally reworked the surviving rocky hills by abrasion.Fil: Martinez, Oscar A.. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Rabassa, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentin

    Antarctic crabs: invasion or endurance?

    Get PDF
    Recent scientific interest following the “discovery” of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This “invasion hypothesis” suggests that decapod crabs were driven out of Antarctica 40–15 million years ago and are only now returning as “warm” enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60°S. All are restricted to waters warmer than 0°C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day “crab invasion”. We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the “invasion hypothesis”
    corecore