11,751 research outputs found
Temporal and Spatial Expression Patterns of miR-302 and miR-367 During Early Embryonic Chick Development
published_or_final_versio
Optimal design of multi-channel microreactor for uniform residence time distribution
Multi-channel microreactors can be used for various applications that require chemical or electrochemical reactions in either liquid, gaseous or multi phase. For an optimal control of the chemical reactions, one key parameter for the design of such microreactors is the residence time distribution of the fluid, which should be as uniform as possible in the series of microchannels that make up the core of the reactor. Based on simplifying assumptions, an analytical model is proposed for optimizing the design of the collecting and distributing channels which supply the series of rectangular microchannels of the reactor, in the case of liquid flows. The accuracy of this analytical approach is discussed after comparison with CFD simulations and hybrid analytical-CFD calculations that allow an improved refinement of the meshing in the most complex zones of the flow. The analytical model is then extended to the case of microchannels with other cross-sections (trapezoidal or circular segment) and to gaseous flows, in the continuum and slip flow regimes. In the latter case, the model is based on second-order slip flow boundary conditions, and takes into account the compressibility as well as the rarefaction of the gas flow
Spin Discrimination in Three-Body Decays
The identification of the correct model for physics beyond the Standard Model
requires the determination of the spin of new particles. We investigate to
which extent the spin of a new particle can be identified in scenarios
where it decays dominantly in three-body decays . Here we
assume that is a candidate for dark matter and escapes direct detection at
a high energy collider such as the LHC. We show that in the case that all
intermediate particles are heavy, one can get information on the spins of
and at the LHC by exploiting the invariant mass distribution of the two
standard model fermions. We develop a model-independent strategy to determine
the spins without prior knowledge of the unknown couplings and test it in a
series of Monte Carlo studies.Comment: 31+1 pages, 4 figures, 8 tables, JHEP.cls include
Crystal Structure of the Rad3/XPD regulatory domain of Ssl1/p44
The Ssl1/p44 subunit is a core component of the yeast/mammalian general transcription factor TFIIH, which is involved in transcription and DNA repair. Ssl1/p44 binds to and stimulates the Rad3/XPD helicase activity of TFIIH. To understand the helicase stimulatory mechanism of Ssl1/p44, we determined the crystal structure of the N-terminal regulatory domain of Ssl1 from Saccharomyces cerevisiae. Ssl1 forms a von Willebrand factor A fold in which a central six-stranded beta-sheet is sandwiched between three alpha helices on both sides. Structural and biochemical analyses of Ssl1/p44 revealed that the beta 4-alpha 5 loop, which is frequently found at the interface between von Willebrand factor A family proteins and cellular counterparts, is critical for the stimulation of Rad3/XPD. Yeast genetics analyses showed that double mutation of Leu-239 and Ser-240 in the beta 4-alpha 5 loop of Ssl1 leads to lethality of a yeast strain, demonstrating the importance of the Rad3-Ssl1 interactions to cell viability. Here, we provide a structural model for the Rad3/XPD-Ssl1/p44 complex and insights into how the binding of Ssl1/p44 contributes to the helicase activity of Rad3/XPD and cell viability.X1165Ysciescopu
Bi-objective optimization of pylon-engine-nacelle assembly: weight vs. tip clearance criterion
The Escherichia coli transcriptome mostly consists of independently regulated modules
Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome
Measuring Invisible Particle Masses Using a Single Short Decay Chain
We consider the mass measurement at hadron colliders for a decay chain of two
steps, which ends with a missing particle. Such a topology appears as a
subprocess of signal events of many new physics models which contain a dark
matter candidate. From the two visible particles coming from the decay chain,
only one invariant mass combination can be formed and hence it is na\"ively
expected that the masses of the three invisible particles in the decay chain
cannot be determined from a single end point of the invariant mass
distribution. We show that the event distribution in the
vs. invariant mass-squared plane, where , are the transverse
energies of the two visible particles, contains the information of all three
invisible particle masses and allows them to be extracted individually. The
experimental smearing and combinatorial issues pose challenges to the mass
measurements. However, in many cases the three invisible particle masses in the
decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure
High-yield isolation of extracellular vesicles using aqueous two-phase system
Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (similar to 70%) in a short time (similar to 15 min). Consequently, it can significantly increase the diagnostic applicability of EVs.113219Ysciescopu
Spin and Chirality Effects in Antler-Topology Processes at High Energy Colliders
We perform a model-independent investigation of spin and chirality
correlation effects in the antler-topology processes
at high energy colliders with polarized
beams. Generally the production process
can occur not only through the -channel exchange of vector bosons,
, including the neutral Standard Model (SM) gauge bosons,
and , but also through the - and -channel exchanges of new
neutral states, and , and the -channel
exchange of new doubly-charged states, . The general set of
(non-chiral) three-point couplings of the new particles and leptons allowed in
a renormalizable quantum field theory is considered. The general spin and
chirality analysis is based on the threshold behavior of the excitation curves
for pair production in collisions with
longitudinal and transverse polarized beams, the angular distributions in the
production process and also the production-decay angular correlations. In the
first step, we present the observables in the helicity formalism. Subsequently,
we show how a set of observables can be designed for determining the spins and
chiral structures of the new particles without any model assumptions. Finally,
taking into account a typical set of approximately chiral invariant scenarios,
we demonstrate how the spin and chirality effects can be probed experimentally
at a high energy collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
- …
