466 research outputs found
On the fermionic T-duality of the AdS_4 \times CP^3 sigma-model
In this note we consider a fermionic T-duality of the coset realization of
the type IIA sigma-model on AdS_4 \times CP^3 with respect to the three flat
directions in AdS_4, six of the fermionic coordinates and three of the CP^3
directions. We show that the Buscher procedure fails as it leads to a singular
transformation and discuss the result and its implications.Comment: LaTeX2e, 9 pages, no figures, JHEP style; v2: minor clarifications;
v3: typos fixed, matches the published versio
Fermionic T-duality in the pp-wave limit
AdS5 X S5 and its pp-wave limit are self-dual under transformations involving
eight fermionic T-dualities, a property which accounts for symmetries seen in
scattering amplitudes in N=4 super-Yang-Mills. Despite strong evidence for
similar symmetries in the amplitudes of three-dimensional N=6 ABJM theory, a
corresponding self-duality in the dual geometry AdS4 X CP3 currently eludes us.
Here, working with the type IIA pp-wave limit of AdS4 X CP3 preserving twenty
four supercharges, we show that the pp-wave is self-dual with respect to eight
commuting fermionic T-dualities and not the six expected. In addition, we show
the same symmetry can be found in a superposition pp-wave and a generic pp-wave
with twenty and sixteen unbroken supersymmetries respectively, strongly
suggesting that self-duality under fermionic T-duality may be a symmetry of all
pp-waves.Comment: 21 pages, typos fixe
Evaluation of the diagnostic accuracy of prototype rapid tests for human African trypanosomiasis
Peer reviewedPublisher PD
Self-duality of the D1-D5 near-horizon
We explore fermionic T-duality and self-duality in the geometry AdS3 x S3 x
T4 in type IIB supergravity. We explicitly construct the Killing spinors and
the fermionic T-duality isometries and show that the geometry is self-dual
under a combination of two bosonic AdS3 T-dualities, four fermionic T-dualities
and either two additional T-dualities along T4 or two T-dualities along S3. In
addition, we show that the presence of a B-field acts as an obstacle to
self-duality, a property attributable to S- duality and fermionic T-duality not
commuting. Finally, we argue that fermionic T-duality may be extended to CY2 =
K3, a setting where we cannot explicitly construct the Killing spinors.Comment: 24 pages, references added, changes made to reinforce the point that
S-duality and fermionic T-duality generically do not commute, version
accepted to JHE
On the perturbative S-matrix of generalized sine-Gordon models
Motivated by its relation to the Pohlmeyer reduction of AdS_5 x S^5
superstring theory we continue the investigation of the generalized sine-Gordon
model defined by SO(N+1)/SO(N) gauged WZW theory with an integrable potential.
Extending our previous work (arXiv:0912.2958) we compute the one-loop
two-particle S-matrix for the elementary massive excitations. In the N = 2 case
corresponding to the complex sine-Gordon theory it agrees with the charge-one
sector of the quantum soliton S-matrix proposed in hep-th/9410140. In the case
of N > 2 when the gauge group SO(N) is non-abelian we find a curious anomaly in
the Yang-Baxter equation which we interpret as a gauge artifact related to the
fact that the scattered particles are not singlets under the residual global
subgroup of the gauge group
Superconformal Yang-Mills quantum mechanics and Calogero model with OSp(N|2,R) symmetry
In spacetime dimension two, pure Yang-Mills possesses no physical degrees of
freedom, and consequently it admits a supersymmetric extension to couple to an
arbitrary number, N say, of Majorana-Weyl gauginos. This results in (N,0) super
Yang-Mills. Further, its dimensional reduction to mechanics doubles the number
of supersymmetries, from N to N+N, to include conformal supercharges, and leads
to a superconformal Yang-Mills quantum mechanics with symmetry group
OSp(N|2,R). We comment on its connection to AdS_2 \times S^{N-1} and reduction
to a supersymmetric Calogero model.Comment: 1+28 pages, no figure; Refs added. To appear in JHE
Moduli Stabilization and Cosmology of Type IIB on SU(2)-Structure Orientifolds
We consider type IIB flux compactifications on six-dimensional
SU(2)-structure manifolds with O5- and O7-planes. These six-dimensional spaces
allow not only for F_3 and H_3 fluxes but also for F_1 and F_5 fluxes. We
derive the four-dimensional N=1 scalar potential for such compactifications and
present one explicit example of a fully stabilized AdS vacuum with large volume
and small string coupling. We then discuss cosmological aspects of these
compactifications and derive several no-go theorems that forbid dS vacua and
slow-roll inflation under certain conditions. We also study concrete examples
of cosets and twisted tori and find that our no-go theorems forbid dS vacua and
slow-roll inflation in all but one of them. For the latter we find a dS
critical point with \epsilon numerically zero. However, the point has two
tachyons and eta-parameter \eta \approx -3.1.Comment: 35 pages + appendices, LaTeX2e; v2: numerical dS extremum added,
typos corrected, references adde
Recommended from our members
Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube
Efficient treatment of systematic uncertainties that depend on a large number of nuisance parameters is a persistent difficulty in particle physics and astrophysics experiments. Where low-level effects are not amenable to simple parameterization or re-weighting, analyses often rely on discrete simulation sets to quantify the effects of nuisance parameters on key analysis observables. Such methods may become computationally untenable for analyses requiring high statistics Monte Carlo with a large number of nuisance degrees of freedom, especially in cases where these degrees of freedom parameterize the shape of a continuous distribution. In this paper we present a method for treating systematic uncertainties in a computationally efficient and comprehensive manner using a single simulation set with multiple and continuously varied nuisance parameters. This method is demonstrated for the case of the depth-dependent effective dust distribution within the IceCube Neutrino Telescope
Recommended from our members
Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU
The ordering of the neutrino mass eigenstates is one of the fundamental open questions in neutrino physics. While current-generation neutrino oscillation experiments are able to produce moderate indications on this ordering, upcoming experiments of the next generation aim to provide conclusive evidence. In this paper we study the combined performance of the two future multi-purpose neutrino oscillation experiments JUNO and the IceCube Upgrade, which employ two very distinct and complementary routes toward the neutrino mass ordering. The approach pursued by the 20 kt medium-baseline reactor neutrino experiment JUNO consists of a careful investigation of the energy spectrum of oscillated νe produced by ten nuclear reactor cores. The IceCube Upgrade, on the other hand, which consists of seven additional densely instrumented strings deployed in the center of IceCube DeepCore, will observe large numbers of atmospheric neutrinos that have undergone oscillations affected by Earth matter. In a joint fit with both approaches, tension occurs between their preferred mass-squared differences Δm312=m32-m12 within the wrong mass ordering. In the case of JUNO and the IceCube Upgrade, this allows to exclude the wrong ordering at >5σ on a timescale of 3-7 years - even under circumstances that are unfavorable to the experiments' individual sensitivities. For PINGU, a 26-string detector array designed as a potential low-energy extension to IceCube, the inverted ordering could be excluded within 1.5 years (3 years for the normal ordering) in a joint analysis
Recommended from our members
Search for sources of astrophysical neutrinos using seven years of icecube cascade events
Low-background searches for astrophysical neutrino sources anywhere in the sky can be performed using cascade events induced by neutrinos of all flavors interacting in IceCube with energies as low as ∼1 TeV. Previously we showed that, even with just two years of data, the resulting sensitivity to sources in the southern sky is competitive with IceCube and ANTARES analyses using muon tracks induced by charge current muon neutrino interactions - especially if the neutrino emission follows a soft energy spectrum or originates from an extended angular region. Here, we extend that work by adding five more years of data, significantly improving the cascade angular resolution, and including tests for point-like or diffuse Galactic emission to which this data set is particularly well suited. For many of the signal candidates considered, this analysis is the most sensitive of any experiment to date. No significant clustering was observed, and thus many of the resulting constraints are the most stringent to date. In this paper we will describe the improvements introduced in this analysis and discuss our results in the context of other recent work in neutrino astronomy
- …
