322 research outputs found

    Assessment of human influenza pandemic scenarios in Europe

    Get PDF
    The response to the emergence of the 2009 influenza A(H1N1) pandemic was the result of a decade of pandemic planning, largely centred on the threat of an avian influenza A(H5N1) pandemic. Based on a literature review, this study aims to define a set of new pandemic scenarios that could be used in case of a future influenza pandemic. A total of 338 documents were identified using a searching strategy based on seven combinations of keywords. Eighty-three of these documents provided useful information on the 13 virus-related and health-system-related parameters initially considered for describing scenarios. Among these, four parameters were finally selected (clinical attack rate, case fatality rate, hospital admission rate, and intensive care admission rate) and four different levels of severity for each of them were set. The definition of six most likely scenarios results from the combination of four different levels of severity of the four final parameters (256 possible scenarios). Although it has some limitations, this approach allows for more flexible scenarios and hence it is far from the classic scenarios structure used for pandemic plans until 2009

    Three-dimensional jamming and flows of soft glassy materials

    Get PDF
    Various disordered dense systems such as foams, gels, emulsions and colloidal suspensions, exhibit a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, thoroughly studied with powerful means of 3D characterization, exhibits some analogy with that of glasses which led to call them soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behavior, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple 3D continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The 3D jamming criterion appears to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity with the structural relaxations driven by temperature and density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm

    Using Recombinant Proteins from Lutzomyia longipalpis Saliva to Estimate Human Vector Exposure in Visceral Leishmaniasis Endemic Areas

    Get PDF
    During the blood meal, female sand flies (insects that transmit the parasite Leishmania) inject saliva containing a large variety of molecules with different pharmacological activities that facilitate the acquisition of blood. These molecules can induce the production of anti-saliva antibodies, which can then be used as markers for insect (vector) biting or exposure. Epidemiological studies using sand fly salivary gland sonicate as antigens are hampered by the difficulty of obtaining large amounts of salivary glands. In the present study, we have investigated the use of two salivary recombinant proteins from the sand fly Lutzomyia longipalpis, considered the main vector of visceral leishmaniasis, as an alternative method for screening of exposure to the sand fly. We primarily tested the suitability of using the recombinant proteins to estimate positive anti-saliva ELISA test in small sets of serum samples. Further, we validated the assay in a large sample of 1,077 individuals from an epidemiological survey in a second area endemic for visceral leishmaniasis. Our findings indicate that these proteins represent a promising epidemiological tool that can aid in implementing control measures against leishmaniasis

    UCS protein function is partially restored in the Saccharomyces cerevisiae she4 mutant with expression of the human UNC45-GC, but not UNC45-SM

    Get PDF
    A dedicated UNC45, Cro1, She4 (UCS) domain-containing protein assists in the Hsp90-mediated folding of the myosin head. Only weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and striated muscle UNC45s; UNC45-GC and UNC45-SM, respectively). In vertebrates, UNC45-GC facilitates cytoskeletal functions, whereas the 55% identical UNC45-SM assists assembly of the contractile apparatus of cardiac and skeletal muscles. A Saccharomyces cerevisiae she4Δ mutant, totally lacking any UCS protein, was engineered to express as its sole Hsp90 either the Hsp90α or the Hsp90β isoforms of human cytosolic Hsp90. A transient induction of the human UNC45-GC, but not UNC45-SM, could rescue the defective endocytosis in these she4Δ cells at 39 °C, irrespective of whether they possessed Hsp90α or Hsp90β. UNC45-GC-mediated rescue of the localisation of a Myo5-green fluorescent protein (GFP) fusion to cortical patches at 39 °C was more efficient in the yeast containing Hsp90α, though this may relate to more efficient functioning of Hsp90α as compared to Hsp90β in these strains. Furthermore, inducible expression of UNC45-GC, but not UNC45-SM, could partially rescue survival at a more extreme temperature (45 °C) that normally causes she4Δ mutant yeast cells to lyse. The results indicate that UCS protein function has been most conserved-yeast to man-in the UNC45-GC, not UNC45-SM. This may reflect UNC45-GC being the vertebrate UCS protein that assists formation of the actomyosin complexes needed for cytokinesis, cell morphological change, and organelle trafficking-events also facilitated by the myosins in yeast

    Unc45b Forms a Cytosolic Complex with Hsp90 and Targets the Unfolded Myosin Motor Domain

    Get PDF
    Myosin folding and assembly in striated muscle is mediated by the general chaperones Hsc70 and Hsp90 and a myosin specific co-chaperone, UNC45. Two UNC45 genes are found in vertebrates, including a striated muscle specific form, Unc45b. We have investigated the role of Unc45b in myosin folding. Epitope tagged murine Unc45b (Unc45bFlag) was expressed in muscle and non-muscle cells and bacteria, isolated and characterized. The protein is a soluble monomer in solution with a compact folded rod-shaped structure of ∼19 nm length by electron microscopy. When over-expressed in striated muscle cells, Unc45bFlag fractionates as a cytosolic protein and isolates as a stable complex with Hsp90. Purified Unc45bFlag re-binds Hsp90 and forms a stable complex in solution. The endogenous Unc45b in muscle cell lysates is also found associated with Hsp90. The Unc45bFlag/Hsp90 complex binds the partially folded myosin motor domain when incubated with myosin subfragments synthesized in a reticulocyte lysate. This binding is independent of the myosin rod or light chains. Unc45bFlag does not bind native myosin subfragments consistent with a chaperone function. More importantly, Unc45bFlag enhances myosin motor domain folding during de novo motor domain synthesis indicating that it has a direct role in myosin maturation. Thus, mammalian Unc45b is a cytosolic protein that forms a stable complex with Hsp90, selectively binds the unfolded conformation of the myosin motor domain, and promotes motor domain folding

    Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B <em>Streptococcus</em>

    Get PDF
    ABSTRACT: Several bacterial pathogens decorate their surfaces with sialic acid (Sia) residues within cell wall components or capsular exopolysaccharides. Sialic acid expression can promote bacterial virulence by blocking complement activation or by engagement of inhibitory sialic acid-binding immunoglobulin-like lectins (Siglecs) on host leukocytes. Expressed at high levels on splenic and lymph node macrophages, sialoadhesin (Sn) is a unique Siglec with an elongated structure that lacks intracellular signaling motifs. Sialoadhesin allows macrophage to engage certain sialylated pathogens and stimulate inflammatory responses, but the in vivo significance of sialoadhesin in infection has not been shown. We demonstrate that macrophages phagocytose the sialylated pathogen group B Streptococcus (GBS) and increase bactericidal activity via sialoadhesin-sialic-acid-mediated recognition. Sialoadhesin expression on marginal zone metallophillic macrophages in the spleen trapped circulating GBS and restricted the spread of the GBS to distant organs, reducing mortality. Specific IgM antibody responses to GBS challenge were also impaired in sialoadhesin-deficient mice. Thus, sialoadhesin represents a key bridge to orchestrate innate and adaptive immune defenses against invasive sialylated bacterial pathogens. KEY MESSAGE: Sialoadhesin is critical for macrophages to phagocytose and clear GBS. Increased GBS organ dissemination in the sialoadhesin-deficient mice. Reduced anti-GBS IgM production in the sialoadhesin-deficient mice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00109-014-1157-y) contains supplementary material, which is available to authorized users

    No evidence for association between SLC11A1 and visceral leishmaniasis in India.

    Get PDF
    BACKGROUND: SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India. METHODS: Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891). RESULTS: No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat. CONCLUSIONS: This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evidence That Lipopolisaccharide May Contribute to the Cytokine Storm and Cellular Activation in Patients with Visceral Leishmaniasis

    Get PDF
    Visceral leishmaniasis (VL) affects organs rich in lymphocytes, being characterized by intense Leishmania-induced T-cell depletion and reduction in other hematopoietic cells. In other infectious and non-infectious diseases in which the immune system is affected, such as HIV-AIDS and inflammatory bowel disease, damage to gut-associated lymphocyte tissues occurs, enabling luminal bacteria to enter into the circulation. Lipopolisaccharide (LPS) is a bacterial product that stimulates macrophages, leading to the production of pro-inflammatory cytokines and other soluble factors such as MIF, which in turn activate lymphocytes. Continuous and exaggerated stimulation causes exhaustion of the T-cell compartment, contributing to immunosuppression
    corecore