2,253 research outputs found

    Influenza and pneumococcal vaccination in Australian adults: A systematic review of coverage and factors associated with uptake

    Full text link
    © 2016 The Author(s). Background: In the absence of an adult vaccination register, coverage estimates for influenza and pneumococcal vaccination come from surveys and other data sources. Methods: Systematic review and meta-analysis of studies examining vaccination coverage in Australian adults from 1990 to 2015, focusing on groups funded under the National Immunisation Program, and intervals prior to and following the introduction of universal funding. Results: Twenty-two studies met the inclusion criteria; 18 used self-report to determine vaccination status. There were 130 unique estimates of coverage extracted. Among adults aged ≥65y, during the period of universal funding (1999-onwards), the summary estimate of annual influenza vaccination coverage from 27 point estimates was 74.8 % (95 % CI 73.4-76.2 %; range 63.9-82.4 %); prior to this period (1992-1998) from 10 point estimates it was 61.3 % (95 % CI 58.0-64.6 %; range 44.3-71.3 %). For the period of universal funding for pneumococcal vaccination (2005-onwards) the summary estimate for coverage was 56.0 % (95 % CI 53.2-58.8 %; range 51.2-72.8 %, 10 point estimates); prior to 2005 it was 35.4 % (95 % CI 18.8-52.0 %; range 15.4-45.2 %). Coverage for both vaccines was significantly higher following the introduction of universal funding. Influenza vaccination coverage in those aged 18-65 years with a medical indication was lower but data were not combined. Seven studies reported on Aboriginal Australians with three studies reporting five coverage estimates for influenza vaccination in adults ≥65 years (range 71 % - 89 %). Conclusions: Adult influenza and pneumococcal vaccination coverage has increased since the introduction of universal funding, but remains sub-optimal, with pneumococcal coverage lower than influenza. Implications: This review highlights the need for more coverage data overall and in high risk groups, to support public health programs to improve coverage

    Black, Hispanic, and White Women's Perception of Heart Disease

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73200/1/j.0889-7204.2007.05698.x.pd

    Estimating Sustainable Harvests Of Eastern Oysters, Crassostrea Virginica

    Get PDF
    Sustainability of a fishery is traditionally and typically considered achieved if the exploited population does not decline in numbers or biomass over time as a result of fishing relative to biological reference point goals. Oysters, however, exhibit atypical population dynamics compared with many other commercial species. The population dynamics often display extreme natural interannual variation in numbers and biomass, and oysters create their own habitat-the reef itself. With the worldwide decline of oyster reef habitat and the oyster fisheries dependent thereon, the maintenance of shell has received renewed attention as essential to population sustainability. We apply a shell budget model to estimate the sustainable catch of oysters on public oyster grounds in Louisiana using no net shell loss as a sustainability reference point. Oyster density and size are obtained from an annual stock assessment. The model simulates oyster growth and mortality, and natural shell loss. Shell mass is increased when oysters die in place, and is diminished when oysters are removed by fishing. The shell budget model has practical applications, such as identifying areas for closure, determining total allowable catch, managing shell planting and reef restoration, and achieving product certification for sustainability. The determination of sustainable yield by shell budget modeling should be broadly applicable to the eastern oyster across its entire range

    The hidden horizon and black hole unitarity

    Full text link
    We motivate through a detailed analysis of the Hawking radiation in a Schwarzschild background a scheme in accordance with quantum unitarity. In this scheme the semi-classical approximation of the unitary quantum - horizonless - black hole S-matrix leads to the conventional description of the Hawking radiation from a classical black hole endowed with an event horizon. Unitarity is borne out by the detailed exclusive S-matrix amplitudes. There, the fixing of generic out-states, in addition to the in-state, yields in asymptotic Minkowski space-time saddle-point contributions which are dominated by Planckian metric fluctuations when approaching the Schwarzschild radius. We argue that these prevent the corresponding macroscopic "exclusive backgrounds" to develop an event horizon. However, if no out-state is selected, a distinct saddle-point geometry can be defined, in which Planckian fluctuations are tamed. Such "inclusive background" presents an event horizon and constitutes a coarse-grained average over the aforementioned exclusive ones. The classical event horizon appears as a coarse-grained structure, sustaining the thermodynamic significance of the Bekenstein-Hawking entropy. This is reminiscent of the tentative fuzzball description of extremal black holes: the role of microstates is played here by a complete set of out-states. Although the computations of unitary amplitudes would require a detailed theory of quantum gravity, the proposed scheme itself, which appeals to the metric description of gravity only in the vicinity of stationary points, does not.Comment: 29 pages, 4 figures. Typos corrected. Two footnotes added (footnotes 3 and 5

    Solving the Simplest Theory of Quantum Gravity

    Full text link
    We solve what is quite likely the simplest model of quantum gravity, the worldsheet theory of an infinitely long, free bosonic string in Minkowski space. Contrary to naive expectations, this theory is non-trivial. We illustrate this by constructing its exact factorizable S-matrix. Despite its simplicity, the theory exhibits many of the salient features expected from more mature quantum gravity models, including the absence of local off-shell observables, a minimal length, a maximum achievable (Hagedorn) temperature, as well as (integrable relatives of) black holes. All these properties follow from the exact S-matrix. We show that the complete finite volume spectrum can be reconstructed analytically from this S-matrix with the help of the thermodynamic Bethe Ansatz. We argue that considered as a UV complete relativistic two-dimensional quantum field theory the model exhibits a new type of renormalization group flow behavior, "asymptotic fragility". Asymptotically fragile flows do not originate from a UV fixed point.Comment: 32+4 pages, 1 figure, v2: typos fixed, published versio

    The population genetic structure of the urchin Centrostephanus rodgersii in New Zealand with links to Australia

    Get PDF
    © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021Publishe

    Scalar Three-point Functions in a CDL Background

    Full text link
    Motivated by the FRW-CFT proposal by Freivogel, Sekino, Susskind and Yeh, we compute the three-point function of a scalar field in a Coleman-De Luccia instanton background. We first compute the three-point function of the scalar field making only very mild assumptions about the scalar potential and the instanton background. We obtain the three-point function for points in the FRW patch of the CDL instanton and take two interesting limits; the limit where the three points are near the boundary of the hyperbolic slices of the FRW patch, and the limit where the three points lie on the past lightcone of the FRW patch. We expand the past lightcone three-point function in spherical harmonics. We show that the near boundary limit expansion of the three-point function of a massless scalar field exhibits conformal structure compatible with FRW-CFT when the FRW patch is flat. We also compute the three-point function when the scalar is massive, and explain the obstacles to generalizing the conjectured field-operator correspondence of massless fields to massive fields.Comment: 42 pages + appendices, 10 figures; v2, v3: minor correction

    Charge Lattices and Consistency of 6D Supergravity

    Get PDF
    We extend the known consistency conditions on the low-energy theory of six-dimensional N = 1 supergravity. We review some facts about the theory of two-form gauge fields and conclude that the charge lattice Gamma for such a theory has to be self-dual. The Green-Schwarz anomaly cancellation conditions in the supergravity theory determine a sublattice of Gamma. The condition that this sublattice can be extended to a self-dual lattice Gamma leads to a strong constraint on theories that otherwise appear to be self-consistent.Comment: 15 pages. v2: minor changes; references, additional example added; v3: minor corrections and clarifications added, JHEP versio

    Thermal phases of D1-branes on a circle from lattice super Yang-Mills

    Get PDF
    We report on the results of numerical simulations of 1+1 dimensional SU(N) Yang-Mills theory with maximal supersymmetry at finite temperature and compactified on a circle. For large N this system is thought to provide a dual description of the decoupling limit of N coincident D1-branes on a circle. It has been proposed that at large N there is a phase transition at strong coupling related to the Gregory-Laflamme (GL) phase transition in the holographic gravity dual. In a high temperature limit there was argued to be a deconfinement transition associated to the spatial Polyakov loop, and it has been proposed that this is the continuation of the strong coupling GL transition. Investigating the theory on the lattice for SU(3) and SU(4) and studying the time and space Polyakov loops we find evidence supporting this. In particular at strong coupling we see the transition has the parametric dependence on coupling predicted by gravity. We estimate the GL phase transition temperature from the lattice data which, interestingly, is not yet known directly in the gravity dual. Fine tuning in the lattice theory is avoided by the use of a lattice action with exact supersymmetry.Comment: 21 pages, 8 figures. v2: References added, two figures were modified for clarity. v3: Normalisation of lattice coupling corrected by factor of two resulting in change of estimate for c_cri

    U(1) Instantons on AdS_4 and the Uplift to Exact Supergravity Solutions

    Full text link
    We consider self-duality equation of U(1) gauge fields on Euclidean AdS_4 space, and find a simple finite action solution. With a suitable ansatz, we are able to embed this solution into the 10d supergravity background of AdS_4\times CP^3. Further, we show that the solution can be uplifted to an exact solution in 11d supergravity background of AdS_4\times SE_7.Comment: 12 pages, a comment on boundary conditions and refs. adde
    • …
    corecore