9 research outputs found

    Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.

    Get PDF
    Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda

    Lymphatic filariasis in the Democratic Republic of Congo; micro-stratification overlap mapping (MOM) as a prerequisite for control and surveillance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Democratic Republic of Congo (DRC) has a significant burden of lymphatic filariasis (LF) caused by the parasite <it>Wuchereria bancrofti</it>. A major impediment to the expansion of the LF elimination programme is the risk of serious adverse events (SAEs) associated with the use of ivermectin in areas co-endemic for onchocerciasis and loiasis. It is important to analyse these and other factors, such as soil transmitted helminths (STH) and malaria co-endemicity, which will impact on LF elimination.</p> <p>Results</p> <p>We analysed maps of onchocerciasis community-directed treatment with ivermectin (CDTi) from the African Programme for Onchocerciasis Control (APOC); maps of predicted prevalence of <it>Loa loa</it>; planned STH control maps of albendazole (and mebendazole) from the Global Atlas of Helminth Infections (GAHI); and bed nets and insecticide treated nets (ITNs) distribution from Demographic and Health Surveys (DHS) as well as published historic data which were incorporated into overlay maps. We developed an approach we designate as micro-stratification overlap mapping (MOM) to identify areas that will assist the implementation of LF elimination in the DRC. The historic data on LF was found through an extensive review of the literature as no recently published information was available.</p> <p>Conclusions</p> <p>This paper identifies an approach that takes account of the various factors that will influence not only country strategies, but suggests that country plans will require a finer resolution mapping than usual, before implementation of LF activities can be efficiently deployed. This is because 1) distribution of ivermectin through APOC projects will already have had an impact of LF intensity and prevalence 2) DRC has been up scaling bed net distribution which will impact over time on transmission of <it>W. bancrofti </it>and 3) recently available predictive maps of <it>L. loa </it>allow higher risk areas to be identified, which allow LF implementation to be initiated with reduced risk where <it>L. loa </it>is considered non-endemic. We believe that using the proposed MOM approach is essential for planning the expanded distribution of drugs for LF programmes in countries co-endemic for filarial infections.</p

    All ears

    No full text

    The biology of malarial parasite in the mosquito: a review

    No full text
    The purpose of this review is to summarize the biology of Plasmodium in the mosquito including recent data to contribute to better understanding of the developmental interaction between mosquito and malarial parasite. The entire sporogonic cycle is discussed taking into consideration different parasite/vector interactions and factors affecting parasite development to the mosquito
    corecore