13 research outputs found

    Improved MR phase-contrast velocimetry using a novel nine-point balanced motion-encoding scheme with increased robustness to eddy current effects

    No full text
    Phase-contrast MRI (PC-MRI) velocimetry is a noninvasive, high-resolution motion assessment tool. However, high motion sensitivity requires strong motion-encoding magnetic gradients, making phase-contrast-MRI prone to baseline shift artifacts due to the generation of eddy currents. In this study, we propose a novel nine-point balanced velocity-encoding strategy, designed to be more accurate in the presence of strong and rapidly changing gradients. The proposed method was validated using a rotating phantom, and its robustness and precision were explored and compared with established approaches through computer simulations and in vivo experiments. Computer simulations yielded a 39-57% improvement in velocity-noise ratio (corresponding to a 27-33% reduction in measurement error), depending on which method was used for comparison. Moreover, in vivo experiments confirmed this by demonstrating a 26-53% reduction in accumulated velocity error over the R-R interval. The nine-point balanced phase-contrast-MRI-encoding strategy is likely useful for settings where high spatial and temporal resolution and/or high motion sensitivity is required, such as in high-resolution rodent myocardial tissue phase mapping. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc

    Improved MR phase-contrast velocimetry using a novel nine-point balanced motion-encoding scheme with increased robustness to eddy current effects

    No full text
    Phase-contrast MRI (PC-MRI) velocimetry is a noninvasive, high-resolution motion assessment tool. However, high motion sensitivity requires strong motion-encoding magnetic gradients, making phase-contrast-MRI prone to baseline shift artifacts due to the generation of eddy currents. In this study, we propose a novel nine-point balanced velocity-encoding strategy, designed to be more accurate in the presence of strong and rapidly changing gradients. The proposed method was validated using a rotating phantom, and its robustness and precision were explored and compared with established approaches through computer simulations and in vivo experiments. Computer simulations yielded a 39-57% improvement in velocity-noise ratio (corresponding to a 27-33% reduction in measurement error), depending on which method was used for comparison. Moreover, in vivo experiments confirmed this by demonstrating a 26-53% reduction in accumulated velocity error over the R-R interval. The nine-point balanced phase-contrast-MRI-encoding strategy is likely useful for settings where high spatial and temporal resolution and/or high motion sensitivity is required, such as in high-resolution rodent myocardial tissue phase mapping. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc

    Novel insight into the detailed myocardial motion and deformation of the rodent heart using high-resolution phase contrast cardiovascular magnetic resonance.

    Get PDF
    BACKGROUND: Phase contrast velocimetry cardiovascular magnetic resonance (PC-CMR) is a powerful and versatile tool allowing assessment of in vivo motion of the myocardium. However, PC-CMR is sensitive to motion related artifacts causing errors that are geometrically systematic, rendering regional analysis of myocardial function challenging. The objective of this study was to establish an optimized PC-CMR method able to provide novel insight in the complex regional motion and strain of the rodent myocardium, and provide a proof-of-concept in normal and diseased rat hearts with higher temporal and spatial resolution than previously reported. METHODS: A PC-CMR protocol optimized for assessing the motion and deformation of the myocardium in rats with high spatiotemporal resolution was established, and ten animals with different degree of cardiac dysfunction underwent examination and served as proof-of-concept. Global and regional myocardial velocities and circumferential strain were calculated, and the results were compared to five control animals. Furthermore, the global strain measurements were validated against speckle-tracking echocardiography, and inter- and intrastudy variability of the protocol were evaluated. RESULTS: The presented method allows assessment of regional myocardial function in rats with high level of detail; temporal resolution was 3.2 ms, and analysis was done using 32 circumferential segments. In the dysfunctional hearts, global and regional function were distinctly altered, including reduced global peak values, increased regional heterogeneity and increased index of dyssynchrony. Strain derived from the PC-CMR data was in excellent agreement with echocardiography (r = 0.95, p < 0.001; limits-of-agreement -0.02 ± 3.92%strain), and intra- and interstudy variability were low for both velocity and strain (limits-of-agreement, radial motion: 0.01 ± 0.32 cm/s and -0.06 ± 0.75 cm/s; circumferential strain: -0.16 ± 0.89%strain and -0.71 ± 1.67%strain, for intra- and interstudy, respectively). CONCLUSION: We demonstrate, for the first time, that PC-CMR enables high-resolution evaluation of in vivo circumferential strain in addition to myocardial motion of the rat heart. In combination with the superior geometric robustness of CMR, this ultimately provides a tool for longitudinal studies of regional function in rodents with high level of detail

    Voltage dependence of the Ca2+ transient in endocardial and epicardial myocytes from the left ventricle of Goto-Kakizaki type 2 diabetic rats

    Get PDF
    Diabetes mellitus is a major global health disorder and, currently, over 450 million people have diabetes with 90% suffering from type 2 diabetes. Left untreated, diabetes may lead to cardiovascular diseases which are a leading cause of death in diabetic patients. Calcium is the trigger and regulator of cardiac muscle contraction and derangement in cellular Ca2+ homeostasis, which can result in heart failure and sudden cardiac death. It is of paramount importance to investigate the regional involvement of Ca2+ in diabetes-induced cardiomyopathy. Therefore, the aim of this study was to investigate the voltage dependence of the Ca2+ transients in endocardial (ENDO) and epicardial (EPI) myocytes from the left ventricle of the Goto-Kakizaki (GK) rats, an experimental model of type 2 diabetes mellitus. Simultaneous measurement of L-type Ca2+ currents and Ca2+ transients was performed by whole-cell patch clamp techniques. GK rats displayed significantly increased heart weight, heart weight/body weight ratio, and non-fasting and fasting blood glucose compared to controls (CON). Although the voltage dependence of L-type Ca2+ current was unaltered, the voltage dependence of the Ca2+ transients was reduced to similar extents in EPI-GK and ENDO-GK compared to EPI-CON and ENDO-CON myocytes. TPK L-type Ca2+ current and Ca2+ transient were unaltered. THALF decay of L-type Ca2+ current was unaltered; however, THALF decay of the Ca2+ transient was shortened in ENDO and EPI myocytes from GK compared to CON rat hearts. In conclusion, the amplitude of L-type Ca2+ current was unaltered; however, the voltage dependence of the Ca2+ transient was reduced to similar extents in EPI and ENDO myocytes from GK rats compared to their respective controls, suggesting the possibility of dysfunctional sarcoplasmic reticulum Ca2+ transport in the GK diabetic rat hearts
    corecore