14 research outputs found

    Differences in cortical coding of heat evoked pain beyond the perceived intensity: An fMRI and EEG study

    Get PDF
    Imaging studies have identified a wide network of brain areas activated by nociceptive stimuli and revealed differences in somatotopic representation of highly distinct stimulation sites (foot vs. hand) in the primary (S1) and secondary (S2) somatosensory cortices. Somatotopic organization between adjacent dermatomes and differences in cortical coding of similarly perceived nociceptive stimulation are less well studied. Here, cortical processing following contact heat nociceptive stimulation of cervical (C4, C6, and C8) and trunk (T10) dermatomes were recorded in 20 healthy subjects using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Stimulation of T10 compared with the C6 and C8 revealed significant higher response intensity in the left S1 (contralateral) and the right S2 (ipsilateral) even when the perceived pain was equal between stimulation sites. Accordingly, contact heat evoked potentials following stimulation of T10 showed significantly higher N2P2 amplitudes compared to C6 and C8. Adjacent dermatomes did not reveal a distinct somatotopical representation. Within the assessed cervical and trunk dermatomes, nociceptive cortical processing to heat differs significantly in magnitude even when controlling for pain perception. This study provides evidence that controlling for pain perception is not sufficient to compare directly the magnitude of cortical processing [blood oxygen level dependence (BOLD) response and amplitude of evoked potentials] between body sites. © 2013 Wiley Periodicals, Inc

    Neurological recovery after traumatic spinal cord injury:what is meaningful? A patients' and physicians' perspective

    Get PDF
    Study design: Cross-sectional survey. Objectives: Most studies on neurological recovery after traumatic spinal cord injury (tSCI) assess treatment effects using the American Spinal Injury Association Impairment Scale (AIS grade) or motor points recovery. To what extent neurological recovery is considered clinically meaningful is unknown. This study investigated the perceived clinical benefit of various degrees of neurological recovery one year after C5 AIS-A tSCI. Setting: The Netherlands. Methods: By means of a web-based survey SCI patients and physicians evaluated the benefit of various scenarios of neurological recovery on a scale from 0 to 100% (0% no benefit to 100% major benefit). Recovery to AIS-C and D, was split into C/C+ and D/D+, which was defined by the lower and upper limit of recovery for each grade. Results: A total of 79 patients and 77 physicians participated in the survey. Each AIS grade improvement from AIS-A was considered significant benefit (all p < 0.05), ranging from 47.8% (SD 26.1) for AIS-B to 86.8% (SD 24.3) for AIS-D+. Motor level lowering was also considered significant benefit (p < 0.05), ranging from 66.1% (SD 22.3) for C6 to 81.7% (SD 26.0) for C8. Conclusions: Meaningful recovery can be achieved without improving in AIS grade, since the recovery of functional motor levels appears to be as important as improving in AIS grade by both patients and physicians. Moreover, minor neurological improvements within AIS-C and D are also considered clinically meaningful. Future studies should incorporate more detailed neurological outcomes to prevent potential underestimation of neurological recovery by only using the AIS grade

    Conditioning Individual Mosquitoes to an Odor: Sex, Source, and Time

    Get PDF
    Olfactory conditioning of mosquitoes may have important implications for vector-pathogen-host dynamics. If mosquitoes learn about specific host attributes associated with pathogen infection, it may help to explain the heterogeneity of biting and disease patterns observed in the field. Sugar-feeding is a requirement for survival in both male and female mosquitoes. It provides a starting point for learning research in mosquitoes that avoids the confounding factors associated with the observer being a potential blood-host and has the capability to address certain areas of close-range mosquito learning behavior that have not previously been described. This study was designed to investigate the ability of the southern house mosquito, Culex quinquefasciatus Say to associate odor with a sugar-meal with emphasis on important experimental considerations of mosquito age (1.2 d old and 3–5 d old), sex (male and female), source (laboratory and wild), and the time between conditioning and testing (<5 min, 1 hr, 2.5 hr, 5 hr, 10 hr, and 24 hr). Mosquitoes were individually conditioned to an odor across these different experimental conditions. Details of the conditioning protocol are presented as well as the use of binary logistic regression to analyze the complex dataset generated from this experimental design. The results suggest that each of the experimental factors may be important in different ways. Both the source of the mosquitoes and sex of the mosquitoes had significant effects on conditioned responses. The largest effect on conditioning was observed in the lack of positive response following conditioning for females aged 3–5 d derived from a long established colony. Overall, this study provides a method for conditioning experiments involving individual mosquitoes at close range and provides for future discussion of the relevance and broader questions that can be asked of olfactory conditioning in mosquitoes

    Placebo response in neuropathic pain after spinal cord injury: a meta-analysis of individual participant data

    No full text
    Catherine R Jutzeler,1&ndash;3 Freda M Warner,1,2 Jacquelyn J Cragg,1,3 Jenny Haefeli,4 J Scott Richards,5 Sven R Andresen,6 Nanna B Finnerup,7,8 Catherine Mercier,9 John LK Kramer1,2 1Faculty of Medicine, ICORD, University of British Columbia, Vancouver, BC, Canada; 2Faculty of Education, School of Kinesiology, University of BC, Vancouver, BC, Canada; 3Faculty of Medicine, Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; 4Weill Institute for Neurosciences, Department of Neurological Surgery, Brain and Spinal Injury Center, University of California, San Francisco, CA, USA; 5Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, USA; 6Spinal Cord Injury Centre of Western Denmark, Department of Neurology, Regional Hospital of Viborg, Viborg, Denmark; 7Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; 8Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; 9Center for Interdisciplinary Research in Rehabilitation and Social Integration, Qu&eacute;bec, QC, Canada Background: Understanding factors associated with high placebo responses in clinical trials increases the likelihood of detecting a meaningful treatment effect. The aim of the present study was to identify subject-level factors that contribute to placebo variability in patients with neuropathic pain due to spinal cord injury (SCI).Methods: Multiple regression analysis of patient data from randomized, double-blind, placebo-controlled trials (duration &gt;4 weeks) involving individuals with SCI was performed. Patient demographics, as well as injury and pain characteristics were examined for their association with changes in pain rating from baseline to the end of the trial (i.e., placebo response). The overall effect of individual predictors was quantified with meta-analysis statistics.Results: A total of 276 patients with SCI from six studies were included in the analysis. Based on the meta-analysis of subject-level predictors, larger placebo responses were associated with male subjects (&beta;=0.635; standard error [SE]=0.262; p=0.016) and higher baseline pain (&beta;=&minus;0.146; SE=0.073; p=0.044). There were no significant effects for injury characteristics (i.e., severity, level, and time since injury) or pain characteristics (i.e., location and evoked). No significant publication bias was detected.Conclusion: The current meta-analysis of individual patient data demonstrated the importance of sex and baseline pain intensity on changes in pain ratings in the placebo arm of SCI central neuropathic pain randomized controlled clinical trials. Overall, our findings indicate that placebo responses occur independent of injury characteristics. Keywords: placebo response, clinical trial, spinal cord injury, neuropathic pai

    Refined sensory measures of neural repair in human spinal cord injury: bridging preclinical findings to clinical value

    Full text link
    Sensory input from the periphery to the brain can be severely compromised or completely abolished after an injury to the spinal cord. Evidence from animal models suggests that endogenous repair processes in the spinal cord mediate extensive sprouting and that this might be further attenuated by targeted therapeutic interventions. However, the extent to which sprouting can contribute to spontaneous recovery after human spinal cord injury (SCI) remains largely unknown, in part because few measurement tools are available in order to non-invasively detect subtle changes in neurophysiology. The proposed application of segmental sensory evoked potentials (e.g., dermatomal contact heat evoked potentials and somatosensory evoked potentials) to assess conduction in ascending pathways (i.e., spinothalamic and dorsal column, respectively) differs from conventional approaches in that individual spinal segments adjacent to the level of lesion are examined. The adoption of these approaches into clinical research might provide improved resolution for measuring changes in sensory impairments and might determine the extent by which spontaneous recovery after SCI is mediated by similar endogenous repair mechanisms in humans as in animal models

    A quantitative skin impedance test to diagnose spinal cord injury

    No full text
    The purpose of this study was to develop a quantitative skin impedance test that could be used to diagnose spinal cord injury (SCI) if any, especially in unconscious and/or non-cooperative SCI patients. To achieve this goal, initially skin impedance of the sensory key points of the dermatomes (between C3 and S1 bilaterally) was measured in 15 traumatic SCI patients (13 paraplegics and 2 tetraplegics) and 15 control subjects. In order to classify impedance values and to observe whether there would be a significant difference between patient and subject impedances, an artificial neural network (ANN) with back-propagation algorithm was employed. Validation results of the ANN showed promising performance. It could classify traumatic SCI patients with a success rate of 73%. By assessing the experimental protocols and the validation results, the proposed method seemed to be a simple, objective, quantitative, non-invasive and non-expensive way of assessing SCI in such patients
    corecore