9 research outputs found

    The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity

    Full text link
    Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity

    Terrestrial laser scanning for plot-scale forest measurement

    Get PDF
    Plot-scale measurements have been the foundation for forest surveys and reporting for over 200 years. Through recent integration with airborne and satellite remote sensing, manual measurements of vegetation structure at the plot scale are now the basis for landscape, continental and international mapping of our forest resources. The use of terrestrial laser scanning (TLS) for plot-scale measurement was first demonstrated over a decade ago, with the intimation that these instruments could replace manual measurement methods. This has not yet been the case, despite the unparalleled structural information that TLS can capture. For TLS to reach its full potential, these instruments cannot be viewed as a logical progression of existing plot-based measurement. TLS must be viewed as a disruptive technology that requires a rethink of vegetation surveys and their application across a wide range of disciplines. We review the development of TLS as a plotscale measurement tool, including the evolution of both instrument hardware and key data processing methodologies. We highlight two broad data modelling approaches of gap probability and geometrical modelling and the basic theory that underpins these. Finally, we discuss the future prospects for increasing the utilisation of TLS for plot-scale forest assessment and forest monitoring

    Global leaf trait estimates biased due to plasticity in the shade

    Full text link
    The study of leaf functional trait relationships, the so-called leaf economics spectrum1,2, is based on the assumption of high-light conditions (as experienced by sunlit leaves). Owing to the exponential decrease of light availability through canopies, however, the vast majority of the world's vegetation exists in at least partial shade. Plant functional traits vary in direct dependence of light availability3, with different traits varying to different degrees, sometimes in conflict with expectations from the economic spectrum3. This means that the derived trait relationships of the global leaf economic spectrum are probably dependent on the extent to which observed data in existing large-scale plant databases represent high-light conditions. Here, using an extensive worldwide database of within-canopy gradients of key physiological, structural and chemical traits3, along with three different global trait databases4,5, we show that: (1) accounting for light-driven trait plasticity can reveal novel trait relationships, particularly for highly plastic traits (for example, the relationship between net assimilation rate per area (Aa) and leaf mass per area (LMA)); and (2) a large proportion of leaf traits in current global plant databases reported as measured in full sun were probably measured in the shade. The results show that even though the majority of leaves exist in the shade, along with a large proportion of observations, our current understanding is too focused on conditions in the sun

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV

    No full text
    This study was conducted to model the fraction of intercepted photosynthetically active radiation (fIPAR) in heterogeneous row-structured orchards, and to develop methodologies for accurate mapping of the instantaneous fIPAR at field scale using remote sensing imagery. The generation of high-resolution maps delineating the spatial variation of the radiation interception is critical for precision agriculture purposes such as adjusting management actions and harvesting in homogeneous within-field areas. Scaling-up and model inversion methods were investigated to estimate fIPAR using the 3D radiative transfer model, Forest Light Interaction Model (FLIGHT). The model was tested against airborne and field measurements of canopy reflectance and fIPAR acquired on two commercial peach and citrus orchards, where study plots showing a gradient in the canopy structure were selected. High-resolution airborne multi-spectral imagery was acquired at 10 nm bandwidth and 150 mm spatial resolution using a miniaturized multi-spectral camera on board an unmanned aerial vehicle (UAV). In addition, simulations of the land surface bidirectional reflectance were conducted to understand the relationships between canopy architecture and fIPAR. Input parameters used for the canopy model, such as the leaf and soil optical properties, canopy architecture, and sun geometry were studied in order to assess the effect of these inputs on canopy reflectance, vegetation indices and fIPAR. The 3D canopy model approach used to simulate the discontinuous row-tree canopies yielded spectral RMSE values below 0. 03 (visible region) and below 0. 05 (near-infrared) when compared against airborne canopy reflectance imagery acquired over the sites under study. The FLIGHT model assessment conducted for fIPAR estimation against field measurements yielded RMSE values below 0. 08. The simulations conducted suggested the usefulness of these modeling methods in heterogeneous row-structured orchards, and the high sensitivity of the normalized difference vegetation index and fIPAR to background, row orientation, percentage cover and sun geometry. Mapping fIPAR from high-resolution airborne imagery through scaling-up and model inversion methods conducted with the 3D model yielded RMSE error values below 0. 09 for the scaling-up approach, and below 0. 10 for the model inversion conducted with a look-up table. The generation of intercepted radiation maps in row-structured tree orchards is demonstrated to be feasible using a miniaturized multi-spectral camera on board UAV platforms for precision agriculture purposes. © 2012 Springer Science+Business Media, LLC.Financial support from the Spanish Ministry of Science and Innovation (MCI) for the projects AGL2009-13105, CONSOLIDER CSD2006-67, and AGL2003-01468 is gratefully acknowledged, as well as the Junta de Andalucía-Excelencia AGR-595 and FEDER. M.L. Guillén-Climent was supported by a grant JAE of CSIC, co-funded by the European Social Fund.Peer Reviewe
    corecore