157 research outputs found
Vibrational and electronic excitations in the (Ce,La)MIn5 (M = Co,Rh) heavy-fermion family
We present a systematic study at ambient pressure of the phononic and electronic Raman-active excitations in the ab plane of the (Ce,La)MIn5 (M=Co,Rh) heavy-fermion family. We found that the characteristic Raman spectra of this family of compounds display two phonon modes at similar to 38 and similar to 165 cm(-1) and a broad electronic background centered at similar to 40 cm(-1). For CeCoIn5, the temperature dependence of these excitations shows anomalous behavior near T-*=45 K that may indicate a nontrivial renormalization of the electronic structure driven by strong correlations between hybridized 4f electrons.75
Magnetic polaron and Fermi surface effects in the spin-flip scattering of EuB6
The spin-flip scattering (SFS) between conduction and 4f(7) Eu2+ (S-8(7/2)) electrons in the paramagnetic phase of EuB6 (Tgreater than or equal to2T(c)similar or equal to30 K) is studied by means of electron spin resonance (ESR) at three frequencies. The single Dysonian resonance observed in all cases suggests a metallic environment for the Eu2+ ions. The ESR at high field, Hsimilar or equal to12.05 kG (nusimilar or equal to33.9 GHz), has an anisotropic linewidth with cubic symmetry. The low-field, 1.46 kG (4.1 Ghz) and 3.35 kG (9.5 GHz), ESR linewidths are unexpectedly broader and have a smaller anisotropy than at the higher field. The unconventional narrowing and anisotropy of the linewidth at higher fields are indicative of a homogeneous resonance and microscopic evidence for a strong reduction in spin-flip scattering between the spins of Eu2+ and the states in the electron and hole pockets at the X points of the Brillouin zone by magnetic polarons.701
Perturbing the superconducting planes in CeCoIn5 by Sn substitution
In contrast to substitution on the Co or Ce site, Sn substitution has a remarkably strong effect on superconductivity in CeCoIn5-xSnx, with T-c -> 0 beyond only similar to 3.6% Sn. Instead of being randomly distributed on in-plane and out-of-plane In sites, extended x-ray absorption fine structure measurements show the Sn atoms preferentially substitute within the Ce-In plane. This result highlights the importance of the In(1) site to impurity scattering and clearly demonstrates the two-dimensional nature of superconductivity in CeCoIn5.95
Antiferromagnetic ordering of divalent Eu in EuCu2Si2 single crystals
We report the synthesis, from an indium flux, of single crystals of EuCu2Si2. In contrast to previous studies of polycrystalline samples in which intermediate-valent behavior for Eu is reported, we find that in single crystals of EuCu2Si2 the behavior of Eu is divalent, including the presence of antiferromagnetic order at 10 K. The origins of these variations in ground-state properties are discussed in terms of effective chemical pressure and local changes in chemical environment.63
Cerium Heavy-Fermion Compounds Near Their T=0 Magnetic-Non-Magnetic Boundary.
Measurements of the temperature-dependent specific heat and thermal expansion coefficient near a T=0 magnetic-nonmagnetic boundary, accessed in CeRh2Si2 by application of pressure and in CeRh2-xRuxSi2 at ambient pressure by chemical substitution, emphasize the role of disorder in producing non-Fermi-liquid behavior. Interestingly, superconductivity also develops near this boundary in some crystallographically-ordered Ce-based heavy-fermion compounds. [CeRh2-xRuxSi2, specific heat, thermal expansion, susceptibility, non-Fermi-liquid]. © 1998, The Japan Society of High Pressure Science and Technology. All rights reserved
Probing the electronic structure of pure and doped CeMIn(5) (M=Co,Rh,Ir) crystals with nuclear quadrupolar resonance
We report calculations of the electric-field gradients (EFGs) in pure and doped CeMIn(5) (M=Co, Rh, and Ir) compounds and compare with experiment. The degree to which the Ce 4f electron is localized is treated within various models: the local-density approximation, generalized gradient approximation (GGA), GGA+U, and 4f-core approaches. We find that there is a correlation between the observed EFG and whether the 4f electron participates in the band formation or not. We also find that the EFG evolves linearly with Sn doping in CeRhIn(5), suggesting the electronic structure is modified by doping. In contrast, the observed EFG in CeCoIn(5) doped with Cd changes little with doping. These results indicate that nuclear quadrupolar resonance is a sensitive probe of electronic structure.772
Evolution of the magnetic properties and magnetic structures along the RmMIn3m+2 (R = Ce, Nd, Gd, Tb; M = Rh, Ir; and m=1,2) series of intermetallic compounds
We discuss the evolution of the magnetic properties and magnetic structures along the series of intermetallic compounds RmMIn3m+2 (R=Ce, Nd, Gd, Tb; M=Rh, Ir; and m=1,2). The m=1,2 are, respectively, the single layer and bilayer tetragonal derivatives of their cubic RIn3 relatives. Using a mean field model including an isotropic first-neighbors Ruderman-Kittel-Kasuya-Yoshida interaction (K) and the tetragonal crystalline electrical field (CEF), we demonstrated that, for realistic values of K and CEF parameters, one can qualitatively describe the direction of the ordered moments and the behavior of the ordering temperature for these series. The particular case, where the rare-earth ordered moments lie in the ab plane or are tilted from the c axis and T-N can be reduced by tuning the CEF parameters, revealed an interesting kind of frustration that may be relevant to the physical properties of complex classes of materials such as the RmMIn3m+2 (M=Rh, Ir, and Co; m=1,2) heavy-fermion superconductors. (C) 2006 American Institute of Physics.99
Extremely strong coupling superconductivity in artificial two-dimensional Kondo lattices
When interacting electrons are confined to low-dimensions, the
electron-electron correlation effect is enhanced dramatically, which often
drives the system into exhibiting behaviors that are otherwise highly
improbable. Superconductivity with the strongest electron correlations is
achieved in heavy-fermion compounds, which contain a dense lattice of localized
magnetic moments interacting with a sea of conduction electrons to form a 3D
Kondo lattice. It had remained an unanswered question whether superconductivity
would persist upon effectively reducing the dimensionality of these materials
from three to two. Here we report on the observation of superconductivity in
such an ultimately strongly-correlated system of heavy electrons confined
within a 2D square-lattice of Ce-atoms (2D Kondo lattice), which was realized
by fabricating epitaxial superlattices built of alternating layers of
heavy-fermion CeCoIn5 and conventional metal YbCoIn5. The field-temperature
phase diagram of the superlattices exhibits highly unusual behaviors, including
a striking enhancement of the upper critical field relative to the transition
temperature. This implies that the force holding together the superconducting
electron-pairs takes on an extremely strong coupled nature as a result of
two-dimensionalization.Comment: A revised version has been accepted for publication in Nature Physic
- …