336 research outputs found

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Acute and chronic toxicity of manganese to tropical adult coral (Acropora millepora) to support the derivation of marine manganese water quality guideline values.

    Get PDF
    Adult corals are among the most sensitive marine organisms to dissolved manganese and experience tissue sloughing without bleaching (i.e., no loss of Symbiodinium spp.) but there are no chronic toxicity data for this sensitive endpoint. We exposed adult Acropora millepora to manganese in 2-d acute and 14-d chronic experiments using tissue sloughing as the toxicity endpoint. The acute tissue sloughing median effect concentration (EC50) was 2560 μg Mn/L. There was no chronic toxicity to A. millepora at concentrations up to and including the highest concentration of 1090 μg Mn/L i.e., the chronic no observed effect concentration (NOEC). A coral-specific acute-to-chronic ratio (ACR) (EC50/NOEC) of 2.3 was derived. These data were combined with chronic toxicity data for other marine organisms in a species sensitivity distribution (SSD). Marine manganese guidelines were 190, 300, 390 and 570 μg Mn/L to provide long-term protection of 99, 95, 90, and 80 % of marine species, respectively

    Targeting the Replication Initiator of the Second Vibrio Chromosome: Towards Generation of Vibrionaceae-Specific Antimicrobial Agents

    Get PDF
    The Vibrionaceae is comprised of numerous aquatic species and includes several human pathogens, such as Vibrio cholerae, the cause of cholera. All organisms in this family have two chromosomes, and replication of the smaller one depends on rctB, a gene that is restricted to the Vibrionaceae. Given the increasing prevalence of multi-drug resistance in pathogenic vibrios, there is a need for new targets and drugs to combat these pathogens. Here, we carried out a high throughput cell-based screen to find small molecule inhibitors of RctB. We identified a compound that blocked growth of an E. coli strain bearing an rctB-dependent plasmid but did not influence growth of E. coli lacking this plasmid. This compound, designated vibrepin, had potent cidal activity against V. cholerae and inhibited the growth of all vibrio species tested. Vibrepin blocked RctB oriCII unwinding, apparently by promoting formation of large non-functional RctB complexes. Although vibrepin also appears to have targets other than RctB, our findings suggest that RctB is an attractive target for generation of novel antibiotics that only block growth of vibrios. Vibrio-specific agents, unlike antibiotics currently used in clinical practice, will not engender resistance in the normal human flora or in non-vibrio environmental microorganisms

    Trastuzumab Mediated T-Cell Response against HER-2/Neu Overexpressing Esophageal Adenocarcinoma Depends on Intact Antigen Processing Machinery

    Get PDF
    BACKGROUND: Esophageal adenocarcinoma (EAC) is a highly aggressive disease with poor prognosis, which frequently exhibits HER-2 gene amplification. Trastuzumab, the humanized antibody against HER-2, has potent growth inhibitory effects on HER-2 overexpressing cancers. One effect of trastuzumab is that it causes HER-2 receptor internalization and degradation, enhancing presentation of HER-2 epitopes on MHC-Class I molecules. This enhances the ability of HER-2 specific cytotoxic T lymphocytes (CTLs) to recognize and kill cancer cells. Novel strategies targeting the HER-2 receptor either directly by trastuzumab and/or indirectly by inducing a CTL response against HER-2 epitopes with, for instance, DC immunotherapy and consequently combining these strategies might prove to be very effective. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report that trastuzumab has potent growth inhibitory effects on two HER-2 overexpressing EAC cell lines OE33 and OE19. However, we found that trastuzumab and HER-2 specific CTLs act synergistically in inducing tumor lysis in OE33 but not in OE19. We discovered that in OE19 this deficient response is due to a down-regulation of the Transporter Associated with Antigen Processing-2 (TAP-2). TAP-2 is an important member of the Antigen Processing Machinery (APM), and is one of the essential elements for loading antigens on MHC class I molecules. Importantly, we demonstrated that by inducing re-expression of TAP-2 in OE19 with INF-γ treatment or by incubating the cells with INF-γ producing CTLs, the specific anti HER-2 CTL tumor lysis response and synergistic effect with trastuzumab can be restored. CONCLUSION: An inefficient response of HER-2 overexpressing EAC to trastuzumab and/or DC immunotherapy can be due to a down-regulated TAP-2 expression and thus a deficient APM. Future studies combining trastuzumab with IFN-γ and/or immune-therapies inducing potent anti HER-2 CTL responses could lead to an effective combinatorial strategy for successful treatment of HER-2 overexpressing but APM defective cancer

    Dysglycemias in pregnancy: from diagnosis to treatment. Brazilian consensus statement

    Get PDF
    There is an urgent need to find consensus on screening, diagnosing and treating all degrees of DYSGLYCEMIA that may occur during pregnancies in Brazil, considering that many cases of DYSGLYCEMIA in pregnant women are currently not diagnosed, leading to maternal and fetal complications. For this reason the Brazilian Diabetes Society (SBD) and the Brazilian Federation of Gynecology and Obstetrics Societies (FEBRASGO), got together to introduce this proposal. We present here a joint consensus regarding the standardization of clinical management for pregnant women with any degree of Dysglycemia, on the basis of current information, to improve medical assistance and to avoid related complications of Dysglycemia in pregnancy to the mother and the fetus. This consensus aims to standardize the diagnosis among general practitioners, endocrinologists and obstetricians allowing the dissemination of information in basic health units, public and private services, that are responsible for screening, diagnosing and treating disglycemic pregnant patients

    Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro

    Get PDF
    Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals

    Ser/Thr/Tyr Protein Phosphorylation in the Archaeon Halobacterium salinarum—A Representative of the Third Domain of Life

    Get PDF
    In the quest for the origin and evolution of protein phosphorylation, the major regulatory post-translational modification in eukaryotes, the members of archaea, the “third domain of life”, play a protagonistic role. A plethora of studies have demonstrated that archaeal proteins are subject to post-translational modification by covalent phosphorylation, but little is known concerning the identities of the proteins affected, the impact on their functionality, the physiological roles of archaeal protein phosphorylation/dephosphorylation, and the protein kinases/phosphatases involved. These limited studies led to the initial hypothesis that archaea, similarly to other prokaryotes, use mainly histidine/aspartate phosphorylation, in their two-component systems representing a paradigm of prokaryotic signal transduction, while eukaryotes mostly use Ser/Thr/Tyr phosphorylation for creating highly sophisticated regulatory networks. In antithesis to the above hypothesis, several studies showed that Ser/Thr/Tyr phosphorylation is also common in the bacterial cell, and here we present the first genome-wide phosphoproteomic analysis of the model organism of archaea, Halobacterium salinarum, proving the existence/conservation of Ser/Thr/Tyr phosphorylation in the “third domain” of life, allowing a better understanding of the origin and evolution of the so-called “Nature's premier” mechanism for regulating the functional properties of proteins

    Simulation of Postsynaptic Glutamate Receptors Reveals Critical Features of Glutamatergic Transmission

    Get PDF
    Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors

    Environmental sensing and response genes in cnidaria : the chemical defensome in the sea anemone Nematostella vectensis

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Cell Biology and Toxicology 24 (2008): 483-502, doi:10.1007/s10565-008-9107-5.The starlet sea anemone Nematostella vectensis has been recently established as a new model system for the study of the evolution of developmental processes, as cnidaria occupy a key evolutionary position at the base of the bilateria. Cnidaria play important roles in estuarine and reef communities, but are exposed to many environmental stressors. Here I describe the genetic components of a ‘chemical defensome’ in the genome of N. vectensis, and review cnidarian molecular toxicology. Gene families that defend against chemical stressors and the transcription factors that regulate these genes have been termed a ‘chemical defensome,’ and include the cytochromes P450 and other oxidases, various conjugating enyzymes, the ATP-dependent efflux transporters, oxidative detoxification proteins, as well as various transcription factors. These genes account for about 1% (266/27200) of the predicted genes in the sea anemone genome, similar to the proportion observed in tunicates and humans, but lower than that observed in sea urchins. While there are comparable numbers of stress-response genes, the stress sensor genes appear to be reduced in N. vectensis relative to many model protostomes and deuterostomes. Cnidarian toxicology is understudied, especially given the important ecological roles of many cnidarian species. New genomic resources should stimulate the study of chemical stress sensing and response mechanisms in cnidaria, and allow us to further illuminate the evolution of chemical defense gene networks.WHOI Ocean Life Institute and NIH R01-ES01591
    corecore